Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'cardiac' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'cardiac' found in 11 terms [] and 75 definitions []
previous     16 - 20 (of 86)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
Searchterm 'cardiac' was also found in the following services: 
spacer
News  (82)  Resources  (27)  Forum  (13)  
 
MRI SafetyMRI Resource Directory:
 - Safety -
 
There are different types of contraindications that would prevent a person from being examined with an MRI scanner. MRI systems use strong magnetic fields that attract any ferromagnetic objects with enormous force. Caused by the potential risk of heating, produced from the radio frequency pulses during the MRI procedure, metallic objects like wires, foreign bodies and other implants needs to be checked for compatibility. High field MRI requires particular safety precautions. In addition, any device or MRI equipment that enters the magnet room has to be MR compatible. MRI examinations are safe and harmless, if these MRI risks are observed and regulations are followed.

Safety concerns in magnetic resonance imaging include:
•
the magnetic field strength;
•
possible 'missile effects' caused by magnetic forces;
•
the potential for heating of body tissue due to the application of the radio frequency energy;
•
the effects on implanted active devices such as cardiac pacemakers or insulin pumps;
•
magnetic torque effects on indwelling metal (clips, etc.);
•
the audible acoustic noise;
•
danger due to cryogenic liquids;
•
the application of contrast medium;
mri safety guidance
MRI Safety Guidance
It is important to remember when working around a superconducting magnet that the magnetic field is always on. Under usual working conditions the field is never turned off. Attention must be paid to keep all ferromagnetic items at an adequate distance from the magnet. Ferromagnetic objects which came accidentally under the influence of these strong magnets can injure or kill individuals in or nearby the magnet, or can seriously damage every hardware, the magnet itself, the cooling system, etc.. See MRI resources Accidents.
The doors leading to a magnet room should be closed at all times except when entering or exiting the room. Every person working in or entering the magnet room or adjacent rooms with a magnetic field has to be instructed about the dangers. This should include the patient, intensive-care staff, and maintenance-, service- and cleaning personnel, etc..
The 5 Gauss limit defines the 'safe' level of static magnetic field exposure. The value of the absorbed dose is fixed by the authorities to avoid heating of the patient's tissue and is defined by the specific absorption rate. Leads or wires that are used in the magnet bore during imaging procedures, should not form large-radius wire loops. Leg-to-leg and leg-to-arm skin contact should be prevented in order to avoid the risk of burning due to the generation of high current loops if the legs or arms are allowed to touch. The patient's skin should not be in contact with the inner bore of the magnet.
The outflow from cryogens like liquid helium is improbable during normal operation and not a real danger for patients.
The safety of MRI contrast agents is tested in drug trials and they have a high compatibility with very few side effects. The variations of the side effects and possible contraindications are similar to X-ray contrast medium, but very rare. In general, an adverse reaction increases with the quantity of the MRI contrast medium and also with the osmolarity of the compound.

See also 5 Gauss Fringe Field, 5 Gauss Line, Cardiac Risks, Cardiac Stent, dB/dt, Legal Requirements, Low Field MRI, Magnetohydrodynamic Effect, MR Compatibility, MR Guided Interventions, Claustrophobia, MRI Risks and Shielding.
Radiology-tip.comradRadiation Safety,  Ionizing Radiation
spacer
Medical-Ultrasound-Imaging.comUltrasound Safety,  Absorbed Dose
spacer
• For this and other aspects of MRI safety see our InfoSheet about MRI Safety.
• Patient-related information is collected in our MRI Patient Information.

 
• Related Searches:
    • Magnetic Field
    • Specific Absorption Rate
    • 5 Gauss Limit
    • Nephrogenic Systemic Fibrosis
    • MRI History
 
Further Reading:
  Basics:
MRI Safety
2001   by www.fda.gov    
What MRI Sequences Produce the Highest Specific Absorption Rate (SAR), and Is There Something We Should Be Doing to Reduce the SAR During Standard Examinations?
Thursday, 16 April 2015   by www.ajronline.org    
Contrast Agents: Safety Profile
   by www.clinical-mri.com    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
Newer Heart Devices Safe During MRI
Monday, 23 August 2004   by www.hospimedica.com    
Study: Face Masks Unsafe in MRI Machines
Wednesday, 13 July 2022   by www.laboratoryequipment.com    
COVID-19: Attention shifts to MRI infection control
Thursday, 9 July 2020   by https://www.auntminnieeurope.com/index.aspx?sec=ser§sub=def§pag=dis§ItemID=619012    
FDA Releases New Guidance On Establishing Safety, Compatibility Of Passive Implants In MR Environments
Tuesday, 16 December 2014   by www.meddeviceonline.com    
Modern Implantable Heart Devices Safe For Use In MRI Scans
Wednesday, 16 March 2005   by www.sciencedaily.com    
MRI Safety Resources 
Shielding - Nerve Stimulator - Pregnancy - Breast Implant - Safety Training
 
Myocardial Late Enhancement
 
(LE) Myocardial late enhancement in contrast enhanced cardiac MRI has the ability to precisely delineate myocardial scar associated with coronary artery disease. Viability imaging implies evaluating infarcted myocardium to see whether there is enough viable tissue available for revascularization. The reversal of myocardial dysfunction is particularly relevant in patients with depressed ventricular function because revascularization improves long-term survival. In comparison to SPECT and PET imaging, myocardial late enhancement MRI demonstrates areas of delayed enhancement exactly in correlation with the infarcted region.
Viability on cardiac MRI (CMR) is based on the fact that all infarcts enhance vividly 10-15 minutes after the administration of intravenous paramagnetic contrast agents. This enhancement represents the accumulation of gadolinium in the extracellular space, due to the loss of membrane integrity in the infarcted tissue. This phenomenon of delayed hyperenhancement has been proven to correlate with the actual extent of the infarct.
MRI myocardial late enhancement can quantify the size, location and transmural extent of the infarct. If the transmural extent of the infarct (region of enhancement on MRI) is less than 50% of the wall thickness, there will be improved contractility in that segment following revascularization. In areas of hypokinesia, if there is a rim of "black" or non-infarcted myocardium that is not contracting well, it indicates the presence of hibernating myocardium, which is likely to improve after revascularization of the artery supplying that particular territory.
The total duration of a myocardial late enhancement MR imaging protocol for viability is approximately 30 minutes, including scout images, first-pass images, cine images in two planes, and delayed myocardial enhancement images. In order to assess viable myocardium, the gadolinium contrast agent is injected at a dose of 0.15 to 0.2 mmol/kg. After about 10 minutes, short axis and long axis views (see cardiac axes) of the heart are obtained using an inversion prepared ECG gated gradient echo sequence. The inversion pulse is adjusted to suppress normal myocardium. Areas of nonviable myocardium retain extremely high signal intensity, black areas show normal tissue.

For Ultrasound Imaging (USI) see Myocardial Contrast Echocardiography at Medical-Ultrasound-Imaging.com.
spacer

• View the DATABASE results for 'Myocardial Late Enhancement' (6).Open this link in a new window

 
Further Reading:
  Basics:
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
Prediction of Myocardial Viability by MRI
1999   by circ.ahajournals.org    
Geron Demonstrates hESC-derived cardiomyocytes improve heart function after myocardial infarction
Monday, 27 August 2007   by www.brightsurf.com    
MRI Resources 
Mobile MRI - Movies - Hospitals - Devices - Breast Implant - Examinations
 
Altaireâ„¢InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.hitachimed.com/products/altaire.asp From Hitachi Medical Systems America, Inc.;
the AIRIS made its debut in 1995. Hitachi followed up with the AIRIS II system, which has proven equally successfully. 'All told, Hitachi has installed more than 1,000 MRI systems in the U.S., holding more than 17 percent of the total U.S. MRI installed base, and more than half of the installed base of open MR systems,' says Antonio Garcia, Frost and Sullivan industry research analyst. Now Altaire employs a blend of innovative Hitachi features called VOSIâ„¢ technology, optimizing each sub-system's performance in concert with the other sub-systems, to give the seamless mix of high-field performance and the patient comfort, especially for claustrophobic patients, of open MR systems.

Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Vertical Field, Open MRI
DualQuad T/R Body Coil, MA Head, MA C-Spine, MA Shoulder, MA Wrist, MA CTL Spine, MA Knee, MA TMJ, MA Flex Body (3 sizes), Neck, small and large Extremity, PVA (WIP), Breast (WIP), Neurovascular (WIP), Cardiac (WIP) and MA Foot//Ankle (WIP)
SYNCHRONIZATION
Cardiac gating, ECG/peripheral, respiratory gating (2 modes)
PULSE SEQUENCES
SE, GE, GR, IR, FIR, STIR, ss-FSE, FSE, DE-FSE/FIR, FLAIR, ss/ms-EPI, ss/ms EPI- DWI, SSP, MTC, SE/GE-EPI, MRCP, SARGE, RSSG, TRSG, BASG, Angiography: CE, PC, 2D/3D TOF
IMAGING MODES
Single, multislice, volume study
TR
SE: 30 - 10,000msec GE: 3.6 - 10,000msec IR: 50 - 16,700msec FSE: 200 - 16,7000msec
TE
SE : 8 - 250msec IR: 5.2 -7,680msec GE: 1.8 - 2,000 msec FSE: 5.2 - 7,680
SINGLE/MULTI SLICE
0.05 sec/image (256 x 256)
FOV
5cm to 45 cm continuous
2D: 2 - 100 mm; 3D: 0.5 - 5 mm
1280 x 1024
MEASURING MATRIX
512 x 512
PIXEL INTENSITY
Level Range: -2,000 to +4,000
Sub millimeter
MAGNET TYPE
Self-shielded, superconducting
BORE DIAMETER
or W x H
110 x 43 cm
MAGNET WEIGHT
41,700 kg
H*W*D
256 x 348 x 236 cm
POWER REQUIREMENTS
208 V +/- 10%, 3 phase
COOLING SYSTEM TYPE
Water-cooled
STRENGTH
22 mT/m
3.1 m lateral, 3.6 m vertical
Auto shimming, 3-axis/patient and active shimming
spacer

• View the DATABASE results for 'Altaire™' (2).Open this link in a new window

 
Further Reading:
  News & More:
Altaire High-Field Open MRI(.pdf)
2001
Searchterm 'cardiac' was also found in the following services: 
spacer
News  (82)  Resources  (27)  Forum  (13)  
 
Arrhythmia Rejection
 
With this method irregular RR intervals in cardiac gating during cardiovascular imaging are rejected and then repeated to improve the image quality, whereby the cardiac frequency is used as a basis of the normal heart rate.
The RR interval window determines the percentage variation of the heart rate. Variations of the acquired data outside the window are rejected and not used in the image reconstruction. Also one interval after the arrhytmic beat will be rejected.
Arrhythmia rejection may be inappropriate for patients with certain pathologies, because if the RR interval is constant long, short, long, - all intervals would be rejected. Also a disadvantage is the time consume, but in some cases this function is mandatory, e.g. for diverse retrospective triggered sequences.
spacer
 
Further Reading:
  Basics:
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
Irregular heartbeat may lead to silent strokes
Wednesday, 5 November 2014   by www.techtimes.com    
MRI Resources 
Liver Imaging - Used and Refurbished MRI Equipment - Safety Training - - Mass Spectrometry - Knee MRI
 
Black Blood MRAForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Cardiovascular Imaging -
 
With this magnetic resonance angiography technique flowing blood appears dark.
MR black blood techniques have been developed for cardiovascular imaging to improve segmentation of myocardium from the blood pool. Black blood MRA techniques decrease the signal from blood with reference to the myocardium and make it easier to perform cardiac chamber segmentation.
ECG gated spin echo sequences with presaturation pulses for magnetization preparation will show strong intravascular signal loss due to flow effects when appropriate imaging conditions including spatial presaturation are used. The sequence use the flow void effect as blood passes rapidly through the selected slice.
For dark blood preparation, a pair of nonselective and selective 180° inversion pulses are used, followed by a long inversion time to null signal from inflowing blood. A second selective inversion pulse can also be applied with short inversion time to null the fat signal. These in cardiac imaging used black blood techniques are referred to as double inversion recovery T1 measurement turbo spin echo or fast spin echo, and double-inversion recovery STIR.
 
Images, Movies, Sliders:
 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Black Blood MRA' (6).Open this link in a new window

MRI Resources 
Education pool - Spine MRI - Devices - Crystallography - Claustrophobia - Movies
 
previous      16 - 20 (of 86)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 25 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]