Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets


Out-
      side
 



 
 'MRI Risks' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'MRI Risks' found in 1 term [] and 8 definitions [], (+ 3 Boolean[] results
1 - 5 (of 12)     next
Result Pages : [1]  [2]  [3]
Searchterm 'MRI Risks' was also found in the following services: 
spacer
News  (6)  Resources  (3)  
 
MRI RisksMRI Resource Directory:
 - Safety -
 
The subacute risks and side effects of magnetic and RF fields (for patients and staff) have been intensively examined for a long time, but there have been no long-term studies following persons who have been exposed to the static magnetic fields used in MRI. However, no permanent hazardous effects of a static magnetic field exposure upon human beings have yet been demonstrated.
Temporary possible side effects of high magnetic and RF fields:
Varying magnetic fields can induce so-called magnetic phosphenes that occur when an individual is subject to rapid changes of 2–5 T/s, which can produce a flashing sensation in the eyes. This temporary side effect does not seem to damage the eyes. Static field strengths used for clinical MRI examinations vary between 0.2 and 3.0 tesla;; field changes during the MRI scan vary in the dimension of mT/s. Experimental imaging units can use higher field strengths of up to 14.0 T, which are not approved for human use.
The Radio frequency pulses mainly produce heat, which is absorbed by the body tissue. If the power of the RF radiation is very high, the patient may be heated too much. To avoid this heating, the limit of RF exposure in MRI is up to the maximum specific absorption rate (SAR) of 4 W/kg whole body weight (can be different from country to country). For MRI safety reasons, the MRI machine starts no sequence, if the SAR limit is exceeded.
Very high static magnetic fields are needed to reduce the conductivity of nerves perceptibly. Augmentation of T waves is observed at fields used in standard imaging but this side effect in MRI is completely reversible upon removal from the magnet. Cardiac arrhythmia threshold is typically set to 7–10 tesla. The magnetohydrodynamic effect, which results from a voltage occurring across a vessel in a magnetic field and percolated by a saline solution such as blood, is irrelevant at the field strengths used.
The results of some animal and cellular studies suggest the possibility that electromagnetic fields may act as co-carcinogens or tumor promoters, but the data are inconclusive. Up to 45 tesla, no important effects on enzyme systems have been observed. Neither changes in enzyme kinetics, nor orientation changes in macromolecules have been conclusively demonstrated.
There are some publications associating an increase in the incidence of leukemia with the location of buildings close to high-current power lines with extremely low-frequency (ELF) electromagnetic radiation of 50-60 Hz, and industrial exposure to electric and magnetic fields but a transposition of such effects to MRI or MRS seems unlikely.
Under consideration of the MRI safety guidelines, real dangers or risks of an exposure with common MRI field strengths up to 3 tesla as well as the RF exposure during the MRI scan, are not to be expected.
For more MRI safety information see also Nerve Conductivity, Contraindications, Pregnancy and Specific Absorption Rate.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer
• For this and other aspects of MRI safety see our InfoSheet about MRI Safety.
• Patient-related information is collected in our MRI Patient Information.

 
• Share the entry 'MRI Risks':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Active Device
    • Magnetohydrodynamic Effect
    • Nephrogenic Systemic Fibrosis
    • Cardiovascular Imaging
    • Cardiac Pacemaker
 
Further Reading:
  Basics:
Working with MRI machines may cause vertigo: Study
Wednesday, 25 June 2014   by www.cos-mag.com    
Physics of MRI Safety
   by www.aapm.org    
Specific Absorption Rate: A Specious Dosimetric Means of Characterizing MRI-Related Implant Heating?
Wednesday, 3 December 2003   by rsna2003.rsna.org    
  News & More:
Commission delays electromagnetic fields legislation
Monday, 29 October 2007   by cordis.europa.eu:80    
MagnaSafe Registry: Risks of MRI at 1.5 Tesla For Patients With Non-MRI Conditional Pacemakers and ICDs
Tuesday, 18 November 2014   by www.cardiosource.org    
MRI Safety Resources 
Stent - Safety Products - Breast Implant - Safety pool - Pacemaker
 
MRI SafetyMRI Resource Directory:
 - Safety -
 
There are different types of contraindications that would prevent a person from being examined with an MRI scanner. MRI systems use strong magnetic fields that attract any ferromagnetic objects with enormous force. Caused by the potential risk of heating, produced from the radio frequency pulses during the MRI procedure, metallic objects like wires, foreign bodies and other implants needs to be checked for compatibility. High field MRI requires particular safety precautions. In addition, any device or MRI equipment that enters the magnet room has to be MR compatible. MRI examinations are safe and harmless, if these MRI risks are observed and regulations are followed.

Safety concerns in magnetic resonance imaging include:
the magnetic field strength;
possible 'missile effects' caused by magnetic forces;
the potential for heating of body tissue due to the application of the radio frequency energy;
the effects on implanted active devices such as cardiac pacemakers or insulin pumps;
magnetic torque effects on indwelling metal (clips, etc.);
the audible acoustic noise;
danger due to cryogenic liquids;
the application of contrast medium;


MRI Safety Guidance
It is important to remember when working around a superconducting magnet that the magnetic field is always on. Under usual working conditions the field is never turned off. Attention must be paid to keep all ferromagnetic items at an adequate distance from the magnet. Ferromagnetic objects which came accidentally under the influence of these strong magnets can injure or kill individuals in or nearby the magnet, or can seriously damage every hardware, the magnet itself, the cooling system, etc.. See MRI resources Accidents.
The doors leading to a magnet room should be closed at all times except when entering or exiting the room. Every person working in or entering the magnet room or adjacent rooms with a magnetic field has to be instructed about the dangers. This should include the patient, intensive-care staff, and maintenance-, service- and cleaning personnel, etc..
The 5 Gauss limit defines the 'safe' level of static magnetic field exposure. The value of the absorbed dose is fixed by the authorities to avoid heating of the patient's tissue and is defined by the specific absorption rate. Leads or wires that are used in the magnet bore during imaging procedures, should not form large-radius wire loops. Leg-to-leg and leg-to-arm skin contact should be prevented in order to avoid the risk of burning due to the generation of high current loops if the legs or arms are allowed to touch. The patient’s skin should not be in contact with the inner bore of the magnet.
The outflow from cryogens like liquid helium is improbable during normal operation and not a real danger for patients.
The safety of MRI contrast agents is tested in drug trials and they have a high compatibility with very few side effects. The variations of the side effects and possible contraindications are similar to X-ray contrast medium, but very rare. In general, an adverse reaction increases with the quantity of the MRI contrast medium and also with the osmolarity of the compound.
See also 5 Gauss Fringe Field, 5 Gauss Line, Cardiac Risks, Cardiac Stent, dB/dt, Legal Requirements, Low Field MRI, Magnetohydrodynamic Effect, MR Compatibility, MR Guided Interventions, Claustrophobia, MRI Risks and Shielding.
Radiology-tip.comRadiation Safety,  Ionizing Radiation
spacer
Radiology-tip.comUltrasound Safety,  Absorbed Dose
spacer

• View the DATABASE results for 'MRI Safety' (42).Open this link in a new window


• View the NEWS results for 'MRI Safety' (13).Open this link in a new window.
 
Further Reading:
  Basics:
MRI Safety
2001   by www.fda.gov    
Contrast Agents: Safety Profile
   by www.clinical-mri.com    
  News & More:
FDA Releases New Guidance On Establishing Safety, Compatibility Of Passive Implants In MR Environments
Tuesday, 16 December 2014   by www.meddeviceonline.com    
Newer Heart Devices Safe During MRI
Monday, 23 August 2004   by www.hospimedica.com    
Modern Implantable Heart Devices Safe For Use In MRI Scans
Wednesday, 16 March 2005   by www.sciencedaily.com    
MRI Resources 
Resources - Anatomy - General - Knee MRI - Supplies - Intraoperative MRI
 
Absorbed Dose
 
This dose means the RF power absorbed per unit of mass of an object, and is measured in watts per kilogram (W/kg).
The absorbed dose is dependent on the duty cycle and transmitter-coil type and increases with field strength, radio frequency power and and body size.
The specific absorption rate (SAR) describes the potential for heating of the patient's tissue due to the application of the RF energy necessary to produce the MR signal.
See also Specific Absorption Rate, MRI Safety, and MRI Risks.
spacer

• View the DATABASE results for 'Absorbed Dose' (2).Open this link in a new window

 
Further Reading:
  Basics:
Physics of MRI Safety
   by www.aapm.org    
  News & More:
Commission delays electromagnetic fields legislation
Monday, 29 October 2007   by cordis.europa.eu:80    
Searchterm 'MRI Risks' was also found in the following services: 
spacer
News  (6)  Resources  (3)  
 
Cardiac PacemakerMRI Resource Directory:
 - Safety -
 
A pacemaker is a device for internal or external battery-operated cardiac pacing to overcome cardiac arrhythmias or heart block. All implanted electronic devices are susceptible to the electromagnetic fields used in magnetic resonance imaging. Therefore, the main magnetic field, the gradient field, and the radio frequency (RF) field are potential hazards for cardiac pacemaker patients.
The pacemaker’s susceptibility to static field and its critical role in life support have warranted special consideration. The static magnetic field applies force to magnetic materials. This force and torque effects rise linearly with the field strength of the MRI machines. Both, RF fields and pulsed gradients can induce voltages in circuits or on the pacing lead, which will heat up the tissue around e.g. the lead tip, with a potential risk of thermal injury.
Regulations for pacemakers provide that they have to switch to the magnet mode in static magnetic fields above 1.0 mT. In MR imaging, the gradient and RF fields may mimic signals from the heart with inhibition or fast pacing of the heart. In the magnet mode, most of the current pacemakers will pace with a fix pulse rate because they do not accept the heartsignals. However, the state of an implanted pacemaker will be unpredictable inside a strong magnetic field. Transcutaneous controller adjustment of pacing rate is a feature of many units. Some achieve this control using switches activated by the external application of a magnet to open/close the switch. Others use rotation of an external magnet to turn internal controls. The fringe field around the MRI magnet can activate such switches or controls. Such activations are a safety risk.
Areas with fields higher than 0.5 mT (5 Gauss Limit) commonly have restricted access and/or are posted as a safety risk to persons with pacemakers.


MRI Safety Guidance
A Cardiac pacemaker is because the risks, under normal circumstances an absolute contraindication for MRI procedures.
Nevertheless, with special precaution the risks can be lowered. Reprogramming the pacemaker to an asynchronous mode with fix pacing rate or turning off will reduce the risk of fast pacing or inhibition. Reducing the SAR value reduces the potential MRI risks of heating. For MRI scans of the head and the lower extremities, tissue heating also seems to be a smaller problem. If a transmit receive coil is used to scan the head or the feet, the cardiac pacemaker is outside the sending coil and possible heating is very limited.

spacer

• View the DATABASE results for 'Cardiac Pacemaker' (6).Open this link in a new window

 
Further Reading:
  Basics:
A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems
   by govpulse.us    
Magnetic Resonance Imaging and Cardiac Pacemaker Safety at 1.5-Tesla(.pdf)
   by e-collection.library.ethz.ch    
Magnetic Resonance Imaging in patients with ICDs and Pacemakers (.pdf)
2005   by www.bbriefings.com    
  News & More:
Newer Heart Devices Safe During MRI
Monday, 23 August 2004   by www.hospimedica.com    
Biotronik's new Ilivia ICDs and CRT-Ds with MRI AutoDetect receives CE approval
Wednesday, 3 February 2016   by www.pharmabiz.com    
ITOCHU Named the Exclusive Distributor for ViewRay's MRI-Guided Radiation Therapy System in Japan
Thursday, 22 January 2015   by www.prnewswire.com    
Medtronic Gets Japanese Approval, Launches Evera MRI
Monday, 10 November 2014   by www.pcbdesign007.com    
Modern Implantable Heart Devices Safe For Use In MRI Scans
Wednesday, 16 March 2005   by www.sciencedaily.com    
MRI Resources 
Online Books - Shielding - General - MRCP - Health - MRI Training Courses
 
Cardiac RisksMRI Resource Directory:
 - Safety -
 
During the MRI scan an augmentation of T waves is observed at fields used in standard imaging but this possible MRI side effect is completely reversible upon removal from the magnet. A field strength dependent increase in the amplitude of the ECG in rats has been observed during exposure to high homogeneous stationary magnetic fields, but this side effect is not transferable to standard imaging situations for humans.


MRI Safety Guidance
The minimum level at which augmentation can be observed is 0.3 T and increases by higher field strength. An augmentation in T-wave amplitude can occur instantaneously and is immediately reversible after exposure to the magnetic field ceased. There should be no abnormalities in the ECG in the later follow-up. Augmentation of the signal amplitude in the T-wave segment may result from superimposed electrical potential. No circulatory alterations coincide with the ECG changes. Therefore, no biological risks are believed to be associated with them.
For more MRI safety information see also Contraindications and MRI Risks.

spacer

• View the DATABASE results for 'Cardiac Risks' (2).Open this link in a new window

 
Further Reading:
  Basics:
A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems
   by govpulse.us    
MRI Resources 
Collections - Cochlear Implant - MRI Reimbursement - Spine MRI - Image Quality - MRI Technician and Technologist Career
 
     1 - 5 (of 12)     next
Result Pages : [1]  [2]  [3]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?  



In 2075 (after about 100 years of ...) the MRI scan will be :
obsolete 
done with handheld probe 
done at home (app, ...) 
a 3 second walk through 
daily done 
replaced by something much ... 

Look
      Ups





Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • US-TIP • The-Medical-Market
Copyright © 2003 - 2016 SoftWays. All rights reserved. [ 23 January 2017]
Terms of Use | Privacy Policy | Advertising
 [last update: 2017-01-13 03:47:00]