 | Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
 | Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Resolution, Spatial' found in 1 term [ ] and 0 definition [ ], (+ 9 Boolean[ ] results
| previous 6 - 10 (of 10) Result Pages : [1] [2] |  | |  | Searchterm 'Resolution, Spatial' was also found in the following service: | | | | |
|  |  |
| |
|
(SENSE) A MRI technique for relevant scan time reduction. The spatial information related to the coils of a receiver array are utilized for reducing conventional Fourier encoding. In principle, SENSE can be applied to any imaging sequence and k-space trajectories. However, it is particularly feasible for Cartesian sampling schemes. In 2D Fourier imaging with common Cartesian sampling of k-space sensitivity encoding by means of a receiver array enables to reduce the number of Fourier encoding steps.
SENSE reconstruction without artifacts relies on accurate knowledge of the individual coil sensitivities. For sensitivity assessment, low- resolution, fully Fourier-encoded reference images are required, obtained with each array element and with a body coil.
The major negative point of parallel imaging techniques is that they diminish SNR in proportion to the numbers of reduction factors.
R is the factor by which the number of k-space samples is reduced. In standard Fourier imaging reducing the sampling density results in the reduction of the FOV, causing aliasing. In fact, SENSE reconstruction in the Cartesian case is efficiently performed by first creating one such aliased image for each array element using discrete Fourier transformation (DFT).
The next step then is to create a full-FOV image from the set of intermediate images. To achieve this one must undo the signal superposition underlying the fold-over effect. That is, for each pixel in the reduced FOV the signal contributions from a number of positions in the full FOV need to be separated. These positions form a Cartesian grid corresponding to the size of the reduced FOV.
The advantages are especially true for contrast-enhanced MR imaging such as
dynamic liver MRI (liver imaging) ,
3 dimensional magnetic resonance angiography (3D MRA), and magnetic resonance cholangiopancreaticography ( MRCP).
The excellent scan speed of SENSE allows for acquisition of two separate sets of hepatic MR images within the time regarded as the hepatic arterial-phase (double arterial-phase technique) as well as that of multidetector CT.
SENSE can also increase the time efficiency of spatial signal encoding in 3D MRA. With SENSE, even ultrafast (sub second) 4D MRA can be realized.
For MRCP acquisition, high-resolution 3D MRCP images can be constantly provided by SENSE. This is because SENSE resolves the presence of the severe motion artifacts due to longer acquisition time. Longer acquisition time, which results in diminishing image quality, is the greatest problem for 3D MRCP imaging.
In addition, SENSE reduces the train of gradient echoes in combination with a faster k-space traversal per unit time, thereby dramatically improving the image quality of single shot echo planar imaging (i.e. T2 weighted, diffusion weighted imaging). | |  | | | | | | | Further Reading: | News & More:
|
|
| |
|  | |  |  |  |
| |
|
Cardiovascular MR imaging includes the complete anatomical display of the heart with CINE imaging of all phases of the heartbeat. Ultrafast techniques make breath hold three-dimensional coverage of the heart in different cardiac axes feasible. Cardiac MRI provides reliable anatomical and functional assessment of the heart and evaluation of myocardial viability and coronary artery disease by a noninvasive diagnostic imaging technique.
Cardiovascular MRI offers potential advantages over radioisotopic techniques because it provides superior spatial resolution, does not use ionizing radiation, has no imaging orientations constraints and contrast resolution better than echocardiography. It also offers direct visualization and characterization of atherosclerotic plaques and diseased vessel walls and surrounding tissues in cardiovascular research.
MRI perfusion approaches measure the alteration of regional myocardial magnetic properties after the intravenous injection of contrast agents and assess the extent of injury after a myocardial infarction and the presence of myocardial viability with a technique based on late enhancement. Extracellular MRI contrast agents, like Gd-DTPA, accumulate only in irreversibly damaged myocardium after a time period of at least 10 minutes.
This type of patients may also have an implanted cardiac stent, bypass or a cardiac pacemaker and special caution should be observed on the MRI safety and the contraindications. While a number of coronary stents have been tested and reported to be MRI compatible, coronary stents must be assessed on an individual basis, with the medical team weighing the risks and benefits of the MRI procedure.
Cardiac MRI overview:
•
Calculation of ventricular volume, myocardial mass and wall thickness
•
Functional parameters
•
Description of a stenosis or aneurysma
•
Anatomical display of the heart, vessels and the surrounding tissue
Cardiovascular MRI has become one of the most effective noninvasive imaging techniques for almost all groups of heart and vascular disease. | | | |  | | • View the DATABASE results for 'Cardiovascular Imaging' (18).
| | | • View the NEWS results for 'Cardiovascular Imaging' (6).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
|  | |  |  |  |
| |
|
Knee MRI, with its high soft tissue contrast is one of the main imaging tools to depict knee joint pathology. MRI allows accurate imaging of intra-articular structures such as ligaments, cartilage, menisci, bone marrow, synovium, and adjacent soft tissue.
Knee exams require a dedicated extremity coil, providing a homogenous imaging volume and high SNR to ensure best signal coverage.
A complete knee MR examination includes for example sagittal and coronal T1 weighted, and proton density weighted pulse sequences +/- fat saturation, or STIR sequences. For high spatial resolution, maximal 4 mm thick slices with at least an in plane resolution of 0.75 mm and small gap are recommended. To depict the anterior cruciate ligament clearly, the sagittal plane has to be rotated 10 - 20° externally (parallel to the medial border of the femoral condyle). Retropatellar cartilage can bee seen for example in axial T2 weighted gradient echo sequences with Fatsat. However, the choice of the pulse sequences is depended of the diagnostic question, the used scanner, and preference of the operator.
Diagnostic quality in knee imaging is possible with field strengths ranging from 0.2 to 3T. With low field strengths more signal averages must be measured, resulting in increased scan times to provide equivalent quality as high field strengths.
More diagnostic information of meniscal tears and chondral defects can be obtained by direct magnetic resonance arthrography, which is done by introducing a dilute solution of gadolinium in saline (1:1000) into the joint capsule. The knee is then scanned in all three planes using T1W sequences with fat suppression. For indirect arthrography, the contrast is given i.v. and similar scans are started 20 min. after injection and exercise of the knee.
Frequent indications of MRI scans in musculoskeletal knee diseases are: e.g., meniscal degeneration and tears, ligament injuries, osteochondral fractures, osteochondritis dissecans, avascular bone necrosis and rheumatoid arthritis. See also Imaging of the Extremities and STIR. | | | |  | | • View the DATABASE results for 'Knee MRI' (4).
| | | • View the NEWS results for 'Knee MRI' (4).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
|  |  | Searchterm 'Resolution, Spatial' was also found in the following service: | | | | |
|  |  |
| |
|
The Dixon technique is a MRI method used for fat suppression and/or fat quantification. The difference in magnetic resonance frequencies between fat and water-bound protons allows the separation of water and fat images based on the chemical shift effect.
This imaging technique is named after Dixon, who published in 1984 the basic idea to use phase differences to calculate water and fat components in postprocessing. Dixon's method relies on acquiring an image when fat and water are 'in phase', and another in 'opposed phase' ( out of phase). These images are then added together to get water-only images, and subtracted to get fat-only images. Therefore, this sequence type can deliver up to 4 contrasts in one measurement: in phase, opposed phase, water and fat images. An additional benefit of Dixon imaging is that source images and fat images are also available to the diagnosing physician.
The original two point Dixon sequence (number of points means the number of images acquired at different TE) had limited possibilities to optimize the echo time, spatial resolution, slice thickness, and scan time; but Dixon based fat suppression can be very effective in areas of high magnetic susceptibility, where other techniques fail. This insensitivity to magnetic field inhomogeneity and the possibility of direct image-based water and fat quantification have currently generated high research interests and improvements to the basic method (three point Dixon).
The combination of Dixon with gradient echo sequences allows for example liver imaging with 4 image types in one breath hold. With Dixon TSE/FSE an excellent fat suppression with high resolution can be achieved, particularly useful in imaging of the extremities.
For low bandwidth imaging, chemical shift correction of fat images can be made before recombination with water images to produce images free of chemical shift displacement artifacts. The need to acquire more echoes lengthens the minimum scan time, but the lack of fat saturation pulses extends the maximum slice coverage resulting in comparable scan time. | |  | | • View the DATABASE results for 'Dixon' (8).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
|  | |  |  |  |
| |
|
The use of MR spectroscopy for acquiring functional activation of the brain. There are two possible approaches:
In the first, localized spectra of brain water are acquired and subtle changes in these spectra reflect the biophysical water environment. Changes in T2 due to deoxyhaemoglobin concentration may be detected in this way.
The disadvantages of poor spatial resolution are to some extent offset by the high signal to noise ratio SNR of the spectroscopic data.
An alternative approach is to use MR spectroscopy directly to detect metabolites that are altered by brain activation. These include lactate and glucose. Such experiments have inherently poor spatial and temporal resolution, but do give a direct indication of the metabolic response of the brain to functional activation. | |  | | | |
|  | |  |  |
|  | previous 6 - 10 (of 10) Result Pages : [1] [2] |
| |
|
| |
 | Look Ups |
| |