Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Signal Suppression' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Signal Suppression' found in 1 term [] and 1 definition [], (+ 18 Boolean[] results
previous     16 - 20 (of 20)     
Result Pages : [1]  [2 3 4]
Searchterm 'Signal Suppression' was also found in the following service: 
spacer
News  (1)  
 
Inversion TimeInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(TI) The time period between the 180° inversion pulse and the 90° excitation pulse in an inversion recovery pulse sequence. The inversion time controls the signal of different tissues and with the change of this parameter also fat and water suppression is attainable.
 
Images, Movies, Sliders:
 Knee MRI Sagittal STIR 002  Open this link in a new window
 Brain MRI Coronal FLAIR 001  Open this link in a new window
 
spacer
 
• Related Searches:
    • Ultrafast Gradient Echo Sequence
    • Inversion Recovery Sequence
    • Inversion Recovery
    • Black Blood MRA
    • Prepulse
 
Further Reading:
  News & More:
Study identifies new way to predict prognosis for heart failure patients
Tuesday, 10 December 2013   by medicalxpress.com    
MRI Resources 
Contrast Agents - Functional MRI - Mobile MRI Rental - Jobs - Artifacts - RIS
 
Foldover SuppressionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
A problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV. This signal will be mapped (wrapped, backfolded) back into the image at incorrect locations.
Foldover suppression (phase oversampling, no phase wrap) is a user-selectable parameter that maps this signal to its correct location outside the FOV, then discards any signal from outside the FOV before displaying the image. In order to be able to choose this parameter, in most cases more than an average is necessary.

See also Phase Wrapping Artifact and Oversampling.
spacer

• View the DATABASE results for 'Foldover Suppression' (4).Open this link in a new window

MRI Resources 
Resources - Shielding - Artifacts - Calculation - Services and Supplies - Cardiovascular Imaging
 
Opposed Phase ImageInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
An image in which the signal from two spectral components (such as fat and water) is 180° out of phase and leads to destructive interference in a voxel.
Since fat precesses slower than water, based on their chemical shift, their signals will decay and precess in the transverse plane at different frequencies. When the phase of the TE becomes opposed (180°), their combined signal intensities subtract with each other in the same voxel, producing a signal void or dark band at the fat/water interface of the tissues being examined.
Opposed phase gradient echo imaging for the abdomen is a lipid-type tissue sensitive sequence particularly for the liver and adrenal glands, which puts a signal intensity around abnormal water-based tissues or lesions that are fatty. Due to the increased sensitivity of opposed phase, the tissue visualization increases the lesion-to-liver contrast and exhibits more signal intensity loss in tissues containing small amounts of lipids compared to a spin echo T1 with fat suppression. Using an opposed phase gradient echo also provides the ability to differentiate various pathologies in the brain, including lipids, methaemoglobin, protein, calcifications and melanin.

See also Out of Phase, and Dixon.
 
Images, Movies, Sliders:
 MRI Liver Out Of Phase  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Opposed Phase Image' (5).Open this link in a new window

 
Further Reading:
  News & More:
Adrenal Myelolipoma
Tuesday, 19 June 2001   by www.emedicine.com    
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
Searchterm 'Signal Suppression' was also found in the following service: 
spacer
News  (1)  
 
Knee MRI
 
Knee MRI, with its high soft tissue contrast is one of the main imaging tools to depict knee joint pathology. MRI allows accurate imaging of intra-articular structures such as ligaments, cartilage, menisci, bone marrow, synovium, and adjacent soft tissue.
Knee exams require a dedicated extremity coil, providing a homogenous imaging volume and high SNR to ensure best signal coverage. A complete knee MR examination includes for example sagittal and coronal T1 weighted, and proton density weighted pulse sequences +/- fat saturation, or STIR sequences. For high spatial resolution, maximal 4 mm thick slices with at least an in plane resolution of 0.75 mm and small gap are recommended. To depict the anterior cruciate ligament clearly, the sagittal plane has to be rotated 10 - 20° externally (parallel to the medial border of the femoral condyle). Retropatellar cartilage can bee seen for example in axial T2 weighted gradient echo sequences with Fatsat. However, the choice of the pulse sequences is depended of the diagnostic question, the used scanner, and preference of the operator.
Diagnostic quality in knee imaging is possible with field strengths ranging from 0.2 to 3T. With low field strengths more signal averages must be measured, resulting in increased scan times to provide equivalent quality as high field strengths.
More diagnostic information of meniscal tears and chondral defects can be obtained by direct magnetic resonance arthrography, which is done by introducing a dilute solution of gadolinium in saline (1:1000) into the joint capsule. The knee is then scanned in all three planes using T1W sequences with fat suppression. For indirect arthrography, the contrast is given i.v. and similar scans are started 20 min. after injection and exercise of the knee.
Frequent indications of MRI scans in musculoskeletal knee diseases are:
e.g., meniscal degeneration and tears, ligament injuries, osteochondral fractures, osteochondritis dissecans, avascular bone necrosis and rheumatoid arthritis.

See also Imaging of the Extremities and STIR.
 
Images, Movies, Sliders:
 Sagittal Knee MRI Images T1 Weighted  Open this link in a new window
      

 Anatomic MRI of the Knee 2  Open this link in a new window
    
SlidersSliders Overview

 Knee MRI Coronal Pd Spir 001  Open this link in a new window
 Sagittal Knee MRI Images STIR  Open this link in a new window
      

 Axial Knee MRI Images T2 Weighted  Open this link in a new window
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Knee MRI' (4).Open this link in a new window


• View the NEWS results for 'Knee MRI' (4).Open this link in a new window.
 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
Knee, Anterior Cruciate Ligament Injuries (MRI)
Tuesday, 28 March 2006   by www.emedicine.com    
  News & More:
NSAIDs May Worsen Arthritis Inflammation
Monday, 21 November 2022   by www.itnonline.com    
A Knee MRI in Half the Time? It's Possible
Thursday, 8 April 2021   by www.diagnosticimaging.com    
Seniors, patients, astronauts will all benefit from new USask research on bone health
Saturday, 27 February 2021   by www.yorktonthisweek.com    
3D mapping algorithm reads knee MRIs for new arthritis treatments
Thursday, 11 June 2020   by www.healthimaging.com    
MRI T2 Mapping of the Knee Providing Synthetic Morphologic Images: Comparison to Conventional Turbo Spin-Echo MRI
Tuesday, 1 October 2019   by pubs.rsna.org    
Researcher uses MRI to measure joint's geometry and role in severe knee injury
Tuesday, 23 September 2014   by medicalxpress.com    
Abnormalities on MRI predict knee replacement
Monday, 9 March 2015   by medicalxpress.com    
MRI Resources 
Education - Safety Products - Mobile MRI - Collections - Guidance - Pacemaker
 
Liver ImagingForum -
related threadsMRI Resource Directory:
 - Liver Imaging -
 
Liver imaging can be performed with sonography, computed tomography (CT) and magnetic resonance imaging (MRI). Ultrasound is, caused by the easy access, still the first-line imaging method of choice; CT and MRI are applied whenever ultrasound imaging yields vague results. Indications are the characterization of metastases and primary liver tumors e.g., benign lesions such as focal nodular hyperplasia (FNH), adenoma, hemangioma and malignant lesions (cancer) such as hepatocellular carcinomas (HCC). The decision, which medical imaging modality is more suitable, MRI or CT, is dependent on the different factors. CT is less costly and more widely available; modern multislice scanners provide high spatial resolution and short scan times but has the disadvantage of radiation exposure.
With the introduction of high performance MR systems and advanced sequences the image quality of MRI for the liver has gained substantially. Fast spin echo or single shot techniques, often combined with fat suppression, are the most common T2 weighted sequences used in liver MRI procedures. Spoiled gradient echo sequences are used as ideal T1 weighted sequences for evaluating of the liver. The repetition time (TR) can be sufficiently long to acquire enough sections covering the entire liver in one pass, and to provide good signal to noise. The TE should be the shortest in phase echo time (TE), which provides strong T1 weighting, minimizes magnetic susceptibility effects, and permits acquisition within one breath hold to cover the whole liver. A flip angle of 80° provides good T1 weighting and less of power deposition and tissue saturation than a larger flip angle that would provide comparable T1 weighting.
Liver MRI is very dependent on the administration of contrast agents, especially when detection and characterization of focal lesions are the issues. Liver MRI combined with MRCP is useful to evaluate patients with hepatic and biliary disease.
Gadolinium chelates are typical non-specific extracellular agents diffusing rapidly to the extravascular space of tissues being cleared by glomerular filtration at the kidney. These characteristics are somewhat problematic when a large organ with a huge interstitial space like the liver is imaged. These agents provide a small temporal imaging window (seconds), after which they begin to diffuse to the interstitial space not only of healthy liver cells but also of lesions, reducing the contrast gradient necessary for easy lesion detection. Dynamic MRI with multiple phases after i.v. contrast media (Gd chelates), with arterial, portal and late phase images (similar to CT) provides additional information.
An additional advantage of MRI is the availability of liver-specific contrast agents (see also Hepatobiliary Contrast Agents). Gd-EOB-DTPA (gadoxetate disodium, Gadolinium ethoxybenzyl dimeglumine, EOVIST Injection, brand name in other countries is Primovist) is a gadolinium-based MRI contrast agent approved by the FDA for the detection and characterization of known or suspected focal liver lesions.
Gd-EOB-DTPA provides dynamic phases after intravenous injection, similarly to non-specific gadolinium chelates, and distributes into the hepatocytes and bile ducts during the hepatobiliary phase. It has up to 50% hepatobiliary excretion in the normal liver.
Since ferumoxides are not eliminated by the kidney, they possess long plasmatic half-lives, allowing circulation for several minutes in the vascular space. The uptake process is dependent on the total size of the particle being quicker for larger particles with a size of the range of 150 nm (called superparamagnetic iron oxide). The smaller ones, possessing a total particle size in the order of 30 nm, are called ultrasmall superparamagnetic iron oxide particles and they suffer a slower uptake by RES cells. Intracellular contrast agents used in liver MRI are primarily targeted to the normal liver parenchyma and not to pathological cells. Currently, iron oxide based MRI contrast agents are not marketed.
Beyond contrast enhanced MRI, the detection of fatty liver disease and iron overload has clinical significance due to the potential for evolution into cirrhosis and hepatocellular carcinoma. Imaging-based liver fat quantification (see also Dixon) provides noninvasively information about fat metabolism; chemical shift imaging or T2*-weighted imaging allow the quantification of hepatic iron concentration.

See also Abdominal Imaging, Primovistâ„¢, Liver Acquisition with Volume Acquisition (LAVA), T1W High Resolution Isotropic Volume Examination (THRIVE) and Bolus Injection.

For Ultrasound Imaging (USI) see Liver Sonography at Medical-Ultrasound-Imaging.com.
 
Images, Movies, Sliders:
 Anatomic Imaging of the Liver  Open this link in a new window
      

 MRI Liver T2 TSE  Open this link in a new window
    
 
Radiology-tip.comradAbdomen CT,  Biliary Contrast Agents
spacer
Medical-Ultrasound-Imaging.comLiver Sonography,  Vascular Ultrasound Contrast Agents
spacer

• View the DATABASE results for 'Liver Imaging' (13).Open this link in a new window


• View the NEWS results for 'Liver Imaging' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Comparison of liver scintigraphy and the liver-spleen contrast in Gd-EOB-DTPA-enhanced MRI on liver function tests
Thursday, 18 November 2021   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
Elastography: A Useful Method in Depicting Liver Hardness
Thursday, 15 April 2010   by www.sciencedaily.com    
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
  News & More:
Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease
Saturday, 20 January 2024   by www.nature.com    
Even early forms of liver disease affect heart health, Cedars-Sinai study finds
Thursday, 8 December 2022   by www.eurekalert.org    
For monitoring purposes, AI-aided MRI does what liver biopsy does with less risk, lower cost
Wednesday, 28 September 2022   by radiologybusiness.com    
Perspectum: High Liver Fat (Hepatic Steatosis) Linked to Increased Risk of Hospitalization in COVID-19 Patients With Obesity
Monday, 29 March 2021   by www.businesswire.com    
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans
Friday, 21 July 2017   by www.ema.europa.eu    
T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
Friday, 16 October 2015   by www.ncbi.nlm.nih.gov    
EORTC study aims to qualify ADC as predictive imaging biomarker in preoperative regimens
Monday, 4 January 2016   by www.eurekalert.org    
MRI effectively measures hemochromatosis iron burden
Saturday, 3 October 2015   by medicalxpress.com    
Total body iron balance: Liver MRI better than biopsy
Sunday, 15 March 2015   by www.eurekalert.org    
MRI Resources 
Guidance - Portals - Software - Quality Advice - Education - Used and Refurbished MRI Equipment
 
previous      16 - 20 (of 20)     
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 1 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]