Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Homogeneity' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Homogeneity' found in 4 terms [] and 44 definitions []
previous     11 - 15 (of 48)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'Homogeneity' was also found in the following services: 
spacer
News  (1)  Forum  (5)  
 
Balanced SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with Steady Precession (TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG).
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Infarct 4 Chamber Cine  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
 
Further Reading:
  News & More:
Generic Eddy Current Compensation for Rapid Magnetic Resonance Imaging(.pdf)
   by www.switt.ch    
Magnetic resonance imaging guided musculoskeletal interventions at 0.23T: Chapter 4. Materials and methods
2002
Searchterm 'Homogeneity' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (1) Open this link in a new window
Bird Cage CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
A RF coil, often a transmit receive coil with a number of wires running along the z-direction, arranged to give a cosine current variation around the circumference of the coil, which looks like a bird cage. The bird cage coil works on a different principle to conventionally tuned local and surround coils in that it behaves like a tuned transmission line with one complete cycle of standing wave around the circumference. The frequency supply is generated by an oscillator, which is modulated to form a shaped pulse by a product detector controlled by the waveform generator. The signal must be amplified to 1000's of watts. This can be done using either solid state electronics, valves or a combination of both.
The bird cage coil design provides the best field homogeneity of all RF imaging coils.
One advantage is that it is simple to produce an exceedingly uniform B1 radio frequency field over most of the coil's volume, with the result of images with a high degree of uniformity.
A second advantage is that nodes with zero voltage occur 90° away from the driven part of the coil, thus facilitating the introduction of a second signal in quadrature, which produces a circularly polarized radio frequency field.
This type of volume coil is used for brain (head) MRI, or MR imaging of joints, such as the wrist or knees.

See also the related poll result: '3rd party coils are better than the original manufacturer coils'
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Bird Cage Coil' (4).Open this link in a new window

 
Further Reading:
  Basics:
HEAD AND NECK MRI GRADIENT COIL DESIGN
Thursday, 26 August 1999   by www.imaging.robarts.ca    
System Architecture
2003   by www.revisemri.com    
  News & More:
On the Horizon - Next Generation MRI
Wednesday, 23 October 2013   by thefutureofthings.com    
TOSHIBA INTRODUCES 32 ELEMENT COILS FOR ITS VANTAGE TITAN MR SYSTEMS
Tuesday, 9 November 2010   by medical.toshiba.com    
MRI Resources 
Spectroscopy - Open Directory Project - Stimulator pool - Shielding - Diffusion Weighted Imaging - Liver Imaging
 
Coherent Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.
spacer

• View the DATABASE results for 'Coherent Gradient Echo' (6).Open this link in a new window

Searchterm 'Homogeneity' was also found in the following services: 
spacer
News  (1)  Forum  (5)  
 
DixonInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The Dixon technique is a MRI method used for fat suppression and/or fat quantification. The difference in magnetic resonance frequencies between fat and water-bound protons allows the separation of water and fat images based on the chemical shift effect.
This imaging technique is named after Dixon, who published in 1984 the basic idea to use phase differences to calculate water and fat components in postprocessing. Dixon's method relies on acquiring an image when fat and water are 'in phase', and another in 'opposed phase' (out of phase). These images are then added together to get water-only images, and subtracted to get fat-only images. Therefore, this sequence type can deliver up to 4 contrasts in one measurement: in phase, opposed phase, water and fat images. An additional benefit of Dixon imaging is that source images and fat images are also available to the diagnosing physician.
The original two point Dixon sequence (number of points means the number of images acquired at different TE) had limited possibilities to optimize the echo time, spatial resolution, slice thickness, and scan time; but Dixon based fat suppression can be very effective in areas of high magnetic susceptibility, where other techniques fail. This insensitivity to magnetic field inhomogeneity and the possibility of direct image-based water and fat quantification have currently generated high research interests and improvements to the basic method (three point Dixon).
The combination of Dixon with gradient echo sequences allows for example liver imaging with 4 image types in one breath hold. With Dixon TSE/FSE an excellent fat suppression with high resolution can be achieved, particularly useful in imaging of the extremities.
For low bandwidth imaging, chemical shift correction of fat images can be made before recombination with water images to produce images free of chemical shift displacement artifacts. The need to acquire more echoes lengthens the minimum scan time, but the lack of fat saturation pulses extends the maximum slice coverage resulting in comparable scan time.
spacer

• View the DATABASE results for 'Dixon' (8).Open this link in a new window

 
Further Reading:
  Basics:
Separation of fat and water signal in magnetic resonanace imaging
2011   by www.diva-portal.org    
Direct Water and Fat Determination in Two-Point Dixon Imaging
April 2013   by scholarship.rice.edu    
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
Measurement of Fat/Water Ratios in Rat Liver Using 3DThree-Point Dixon MRI
2004   by www.civm.duhs.duke.edu    
  News & More:
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
Tuesday, 30 August 2022   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
mDIXON being developed to simplify and accelerate liver MRI
September 2010   by incenter.medical.philips.com    
Searchterm 'Homogeneity' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (1) Open this link in a new window
Echo Offset
 
Echo offset is the time setting of spin echo and gradient echo to be not coincident and to generate phase differences between different spectral line signals (e.g., water and fat). The echo offset is the product of the frequency line difference and the time difference (TD) in the echo times and is equal to the magnitude of the result of the phase difference between two spectral lines. Phases may not change linearly with echo offset time in the presence of a large field inhomogeneity. An echo offset excitation pulse sequence can be used in the magnetic field mapping method, to generate maps from which the standard deviation of the phase difference can be calculated.
spacer
 
Further Reading:
  News & More:
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
A short-TR single-echo spin-echo breath-hold method for assessing liver T2
Sunday, 10 December 2023   by link.springer.com    
MRI Resources 
Contrast Enhanced MRI - Anatomy - Spectroscopy pool - Case Studies - Hospitals - Services and Supplies
 
previous      11 - 15 (of 48)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 2 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]