Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Decay' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Decay' found in 3 terms [] and 22 definitions []
previous     16 - 20 (of 25)     next
Result Pages : [1]  [2 3 4 5]
Searchterm 'Decay' was also found in the following services: 
spacer
Forum  (3)  
 
Magnet Stability
 
Temporal stability of the magnetic field. Factors to be considered are field decay of superconducting magnets in persistent mode, aging of permanent magnet material, temperature dependence of permanent magnet material, and temporal stability of magnet power supplies.
spacer
 
Further Reading:
  Basics:
What affects the strength of a magnet?
   by my.execpc.com    
  News & More:
Superconducting Magnets
   by hyperphysics.phy-astr.gsu.edu    
Searchterm 'Decay' was also found in the following services: 
spacer
Radiology  (47) Open this link in a new windowUltrasound  (1) Open this link in a new window
Magnetization Transfer Contrast
 
(MTC) This MRI method increases the contrast by removing a portion of the total signal in tissue. An off resonance radio frequency (RF) pulse saturates macromolecular protons to make them invisible (caused by their ultra-short T2* relaxation times). The MRI signal from semi-solid tissue like brain parenchyma is reduced, and the signal from a more fluid component like blood is retained.
E.g., saturation of broad spectral lines may produce decreases in intensity of lines not directly saturated, through exchange of magnetization between the corresponding states; more closely coupled states will show a greater resulting intensity change. Magnetization transfer techniques make demyelinated brain or spine lesions (as seen e.g. in multiple sclerosis) better visible on T2 weighted images as well as on gadolinium contrast enhanced T1 weighted images.
Off resonance makes use of a selection gradient during an off resonance MTC pulse. The gradient has a negative offset frequency on the arterial side of the imaging volume (caudally more off resonant and cranially less off resonant). The net effect of this type of pulse is that the arterial blood outside the imaging volume will retain more of its longitudinal magnetization, with more vascular signal when it enters the imaging volume. Off resonance MTC saturates the venous blood, leaving the arterial blood untouched.
On resonance has no effect on the free water pool but will saturate the bound water pool and is the difference in T2 between the pools. Special binomial pulses are transmitted causing the magnetization of the free protons to remain unchanged. The z-magnetization returns to its original value. The spins of the bound pool with a short T2 experience decay, resulting in a destroyed magnetization after the on resonance pulse.

See also Magnetization Transfer.
spacer

• View the DATABASE results for 'Magnetization Transfer Contrast' (5).Open this link in a new window

 
Further Reading:
  News & More:
MRI of the Human Eye Using Magnetization Transfer Contrast Enhancement
   by www.iovs.org    
MRI Resources 
Cardiovascular Imaging - Societies - MRI Reimbursement - Calculation - Artifacts - Pediatric and Fetal MRI
 
Opposed Phase ImageInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
An image in which the signal from two spectral components (such as fat and water) is 180° out of phase and leads to destructive interference in a voxel.
Since fat precesses slower than water, based on their chemical shift, their signals will decay and precess in the transverse plane at different frequencies. When the phase of the TE becomes opposed (180°), their combined signal intensities subtract with each other in the same voxel, producing a signal void or dark band at the fat/water interface of the tissues being examined.
Opposed phase gradient echo imaging for the abdomen is a lipid-type tissue sensitive sequence particularly for the liver and adrenal glands, which puts a signal intensity around abnormal water-based tissues or lesions that are fatty. Due to the increased sensitivity of opposed phase, the tissue visualization increases the lesion-to-liver contrast and exhibits more signal intensity loss in tissues containing small amounts of lipids compared to a spin echo T1 with fat suppression. Using an opposed phase gradient echo also provides the ability to differentiate various pathologies in the brain, including lipids, methaemoglobin, protein, calcifications and melanin.

See also Out of Phase, and Dixon.
 
Images, Movies, Sliders:
 MRI Liver Out Of Phase  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Opposed Phase Image' (5).Open this link in a new window

 
Further Reading:
  News & More:
Adrenal Myelolipoma
Tuesday, 19 June 2001   by www.emedicine.com    
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
Searchterm 'Decay' was also found in the following services: 
spacer
Forum  (3)  
 
Refocused Gradient Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Refocused GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize (refocus) remaining xy- (transverse) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the α direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
Companies use different acronyms to describe certain techniques.

Different terms for these gradient echo pulse sequences
R-GRE Refocused Gradient Echo,
FAST Fourier Acquired Steady State,
FFE Fast Field echo,
FISP Fast Imaging with Steady State Precession,
F-SHORT SHORT Repetition Technique Based on Free Induction Decay,
GFEC Gradient Field Echo with Contrast,
GRASS Gradient Recalled Acquisition in Steady State,
ROAST Resonant Offset Averaging in the Steady State,
SSFP Steady State Free Precession.
STERF Steady State Technique with Refocused FID

In this context, 'contrast' refers to the pulse sequence, it does not mean enhancement with a contrast agent.
spacer

• View the DATABASE results for 'Refocused Gradient Echo Sequence' (9).Open this link in a new window

Searchterm 'Decay' was also found in the following services: 
spacer
Radiology  (47) Open this link in a new windowUltrasound  (1) Open this link in a new window
Relaxation TimeForum -
related threads
 
After RF excitation the spins will tend to return to their equilibrium distribution in which there is no transverse magnetization and the longitudinal magnetization is at its maximum value and oriented in the direction of the static magnetic field. The transverse magnetization decays toward zero with a characteristic time constant T2, and the longitudinal magnetization returns toward equilibrium with a characteristic time constant T1.
spacer

• View the DATABASE results for 'Relaxation Time' (44).Open this link in a new window

 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
New technique could allow for safer, more accurate heart scans
Thursday, 10 December 2015   by www.gizmag.com    
MRI Resources 
Journals - Absorption and Emission - Cardiovascular Imaging - Collections - MRA - Resources
 
previous      16 - 20 (of 25)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 1 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]