Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'SPECIAL' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'SPECIAL' found in 1 term [] and 70 definitions []
1 - 5 (of 71)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15]
Searchterm 'SPECIAL' was also found in the following services: 
spacer
News  (105)  Resources  (39)  Forum  (46)  
 
Special ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Special imaging primarily means advanced MRI techniques used for qualitative and quantitative measurement of biological metabolism as e.g., spectroscopy, perfusion imaging (PWI, ASL), diffusion weighted imaging (DWI, DTI, DTT) and brain function (BOLD, fMRI). This physiological magnetic resonance techniques offer insights into brain structure, function, and metabolism.
Spectroscopy provides functional information related to identification and quantification of e.g. brain metabolites. MR perfusion imaging has applications in stroke, trauma, and brain neoplasm. MRI provides the high spatial and temporal resolution needed to measure blood flow to the brain. arterial spin labeling techniques utilize the intrinsic protons of blood and brain tissue, labeled by special preparation pulses, rather than exogenous tracers injected into the blood.
MR diffusion tensor imaging characterizes the ability of water to spread across the brain in different directions. Diffusion parallel to nerve fibers has been shown to be greater than diffusion in the perpendicular direction. This provides a tool to study in vivo fiber connectivity in brain MRI.
FMRI allows the detection of a functional activation in the brain because cortical activity is intimately related to local metabolism changes.

See also Diffusion Tensor Tractography.
spacer
 
• Share the entry 'Special Imaging':  Facebook  Twitter  LinkedIn  

• View the NEWS results for 'Special Imaging' (14).Open this link in a new window.
 
Further Reading:
  Basics:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
Philips and University Medical Center Utrecht Partner to Advance Quantitative MRI With MR-STAT
Monday, 10 August 2020   by www.itnonline.com    
This new 'whole body' MRI is better for cancer patients
Tuesday, 28 January 2014   by www.physiciansnews.com    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
MRI Resources 
Manufacturers - Examinations - Mobile MRI Rental - Directories - Knee MRI - MRI Technician and Technologist Jobs
 
Medical Imaging
 
The definition of imaging is the visual representation of an object. Medical imaging began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. The next development involved the use of fluorescent screens and special glasses to see x-ray images in real time.
A major development was the application of contrast agents for a better image contrast and organ visualization. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This medical imaging technology allows information of biologic processes in vivo. Today, PET and SPECT play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In 1955, the first x-ray image intensifier allowed the pick up and display of x-ray movies.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasonic waves generated by a quartz crystal are reflected at the interfaces between different tissues, received by the ultrasound machine, and turned into pictures with the use of computers and reconstruction software. Ultrasound imaging is an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast agents, real-time 3D ultrasound imaging, and molecular imaging.
Digital imaging techniques were implemented in the 1970s into conventional fluoroscopic image intensifier and by Godfrey Hounsfield with the first computed tomography. Digital images are electronic snapshots sampled and mapped as a grid of dots or pixels. The introduction of x-ray CT revolutionised medical imaging with cross sectional images of the human body and high contrast between different types of soft tissue. These developments were made possible by analog to digital converters and computers. The multislice spiral CT technology has expands the clinical applications dramatically.
The first MRI devices were tested on clinical patients in 1980. The spread of CT machines is the spur to the rapid development of MRI imaging and the introduction of tomographic imaging techniques into diagnostic nuclear medicine. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.
Today, imaging in medicine has advanced to a stage that was inconceivable 100 years ago, with growing medical imaging modalities:
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)

All this type of scans are an integral part of modern healthcare. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in picture archiving and communication systems (PACS). In telemedicine, healthcare professionals are linked over a computer network. Using cutting-edge computing and communications technologies, in videoconferences, where audio and visual images are transmitted in real time, medical images of MRI scans, x-ray examinations, CT scans and other pictures are shareable.
See also Hybrid Imaging.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of', 'MRI will have replaced 50% of x-ray exams by'
Radiology-tip.comradDiagnostic Imaging
spacer
Medical-Ultrasound-Imaging.comMedical Imaging
spacer

• View the DATABASE results for 'Medical Imaging' (20).Open this link in a new window


• View the NEWS results for 'Medical Imaging' (81).Open this link in a new window.
 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Medical imaging shows cost control problem
Tuesday, 6 November 2012   by www.mysanantonio.com    
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
Advances in medical imaging enable visualization of white matter tracts in fetuses
Wednesday, 12 May 2021   by www.eurekalert.or    
Positron Emission Tomographic Imaging in Stroke
Monday, 28 December 2015   by www.ncbi.nlm.nih.gov    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
Combination of MRI and PET imaging techniques can prevent second breast biopsy
Sunday, 29 June 2014   by www.news-medical.net    
3D-DOCTOR Tutorial
   by www.ablesw.com    
MRI Resources 
Shoulder MRI - MRI Physics - Education pool - Jobs - Stimulator pool - Health
 
ARTOSCAN™ - MInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.gemedicalsystems.com/rad/mri/products/artoscan/specs.html Developed by GE Lunar; the ARTOSCAN™-M is designed specifically for in-office musculoskeletal imaging. ARTOSCAN-M's compact, modular design allows placing within a clinical environment, bringing MRI to the patient. Patients remain outside the magnet at all times during the examinations, enabling constant patient-technologist contact. ARTOSCAN-M requires no special RF room, magnetic shielding, special power supply or air conditioning.
The C-SCAN™ (also known as Artoscan C) is developed from the ARTOSCAN™ - M, with a new computer platform.
Device Information and Specification
CLINICAL APPLICATION
Dedicated extremity
CONFIGURATION
Closed
Linear and dual phased array coil, knee, ankle, wrist coils
PULSE SEQUENCES
SE, GE, IR, STIR, FSE, 3D CE, GE-STIR, 3D GE, ME, TME, HSE
IMAGING MODES
Single, multislice, volume study, fast scan, multi slab, cine
TR
12 - 5,000 msec
TE
5 - 220 msec
SINGLE SLICE
0.8 sec/image
MULTISLICE
0.8 sec/image
FOV
10 - 20 cm
SLICE THICKNESS
2D: 2 mm - 10 mm;
3D: 0.6 mm - 10 mm
512 x 512
MEASURING MATRIX
256 x 256 maximum
PIXEL INTENSITY
4,096 gray lvls, 256 lvls in 3D
MAGNET TYPE
Ferrite Permanent
MAGNET WEIGHT
965 kg
POWER REQUIREMENTS
100/110/200/220/230/240V
STRENGTH
10 mT/m
5 GAUSS FRINGE FIELD, radial/axial
28 cm/60 cm
Passive
spacer

• View the DATABASE results for 'ARTOSCAN™ - M' (3).Open this link in a new window

Searchterm 'SPECIAL' was also found in the following services: 
spacer
News  (105)  Resources  (39)  Forum  (46)  
 
Cardiac PacemakerMRI Resource Directory:
 - Safety -
 
A pacemaker is a device for internal or external battery-operated cardiac pacing to overcome cardiac arrhythmias or heart block. All implanted electronic devices are susceptible to the electromagnetic fields used in magnetic resonance imaging. Therefore, the main magnetic field, the gradient field, and the radio frequency (RF) field are potential hazards for cardiac pacemaker patients.
The pacemaker's susceptibility to static field and its critical role in life support have warranted special consideration. The static magnetic field applies force to magnetic materials. This force and torque effects rise linearly with the field strength of the MRI machines. Both, RF fields and pulsed gradients can induce voltages in circuits or on the pacing lead, which will heat up the tissue around e.g. the lead tip, with a potential risk of thermal injury.
Regulations for pacemakers provide that they have to switch to the magnet mode in static magnetic fields above 1.0 mT. In MR imaging, the gradient and RF fields may mimic signals from the heart with inhibition or fast pacing of the heart. In the magnet mode, most of the current pacemakers will pace with a fix pulse rate because they do not accept the heartsignals. However, the state of an implanted pacemaker will be unpredictable inside a strong magnetic field. Transcutaneous controller adjustment of pacing rate is a feature of many units. Some achieve this control using switches activated by the external application of a magnet to open/close the switch. Others use rotation of an external magnet to turn internal controls. The fringe field around the MRI magnet can activate such switches or controls. Such activations are a safety risk.
Areas with fields higher than 0.5 mT (5 Gauss Limit) commonly have restricted access and/or are posted as a safety risk to persons with pacemakers.
mri safety guidance
MRI Safety Guidance
A Cardiac pacemaker is because the risks, under normal circumstances an absolute contraindication for MRI procedures.
Nevertheless, with special precaution the risks can be lowered. Reprogramming the pacemaker to an asynchronous mode with fix pacing rate or turning off will reduce the risk of fast pacing or inhibition. Reducing the SAR value reduces the potential MRI risks of heating. For MRI scans of the head and the lower extremities, tissue heating also seems to be a smaller problem. If a transmit receive coil is used to scan the head or the feet, the cardiac pacemaker is outside the sending coil and possible heating is very limited.
spacer

• View the DATABASE results for 'Cardiac Pacemaker' (6).Open this link in a new window

 
Further Reading:
  Basics:
MRI in Patients with Implanted Devices: Current Controversies
Monday, 1 August 2016   by www.acc.org    
Magnetic resonance imaging in patients with cardiac pacemakers: era of MR Conditional designs
Thursday, 27 October 2011   by 7thspace.com    
  News & More:
Newer Heart Devices Safe During MRI
Monday, 23 August 2004   by www.hospimedica.com    
BIOTRONIK debuts pacemaker with continuous MRI sensor
Wednesday, 30 August 2023   by www.medicaldevice-network.com    
Patients with standard pacemakers, ICDs may safely undergo MRIs
Friday, 24 February 2017   by www.cardiovascularbusiness.com    
ITOCHU Named the Exclusive Distributor for ViewRay's MRI-Guided Radiation Therapy System in Japan
Thursday, 22 January 2015   by www.prnewswire.com    
Modern Implantable Heart Devices Safe For Use In MRI Scans
Wednesday, 16 March 2005   by www.sciencedaily.com    
MRI Resources 
Musculoskeletal and Joint MRI - MRA - Stent - Education pool - Sequences - Functional MRI
 
Contrast AgentsForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
Positive contrast agents cause a reduction in the T1 relaxation time (increased signal intensity on T1 weighted images). They (appearing bright on MRI) are typically small molecular weight compounds containing as their active element Gadolinium, Manganese, or Iron. All of these elements have unpaired electron spins in their outer shells and long relaxivities.
Some typical contrast agents as gadopentetate dimeglumine, gadoteridol, and gadoterate meglumine are utilized for the central nervous system and the complete body; mangafodipir trisodium is specially used for lesions of the liver and gadodiamide for the central nervous system.
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide (SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides (USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons (perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.

The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide (USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.

See also Adverse Reaction and Nephrogenic Systemic Fibrosis.

See also the related poll result: 'The development of contrast agents in MRI is'
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradContrast Agents,  Safety of Contrast Agents
spacer
Medical-Ultrasound-Imaging.comUltrasound Contrast Agents,  Ultrasound Contrast Agent Safety
spacer

• View the DATABASE results for 'Contrast Agents' (122).Open this link in a new window


• View the NEWS results for 'Contrast Agents' (25).Open this link in a new window.
 
Further Reading:
  Basics:
Analysis of MRI contrast agents
Thursday, 17 November 2022   by www.sciencedaily.com    
New guidelines urge caution on use of contrast agents during MR scans
Tuesday, 8 August 2017   by www.dotmed.com    
New Study Sheds Light on Safety of Gadolinium-Based Contrast Agents
Wednesday, 29 November 2017   by www.empr.com    
A safer approach for diagnostic medical imaging
Monday, 29 September 2014   by www.eurekalert.org    
Manganese-based MRI contrast agents: past, present and future
Friday, 4 November 2011   by www.ncbi.nlm.nih.gov    
  News & More:
Brain imaging method may aid mild traumatic brain injury diagnosis
Tuesday, 16 January 2024   by parkinsonsnewstoday.com    
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors
Thursday, 18 January 2024   by www.dovepress.com    
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol
Saturday, 5 February 2022   by www.ncbi.nlm.nih.gov    
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles
Tuesday, 11 January 2022   by pubmed.ncbi.nlm.nih.gov    
Manganese enhanced MRI provides more accurate details of heart function after a heart attack
Tuesday, 11 May 2021   by www.news-medical.net    
Gadopiclenol: positive results for Phase III clinical trials
Monday, 29 March 2021   by www.pharmiweb.co    
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series
Friday, 4 December 2020   by www.dovepress.com    
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR
Monday, 8 March 2021   by www.diagnosticimaging.com    
Water-based non-toxic MRI contrast agents
Monday, 11 May 2020   by chemistrycommunity.nature.com    
New method to detect early-stage cancer identified by Georgia State, Emory research team
Friday, 7 February 2020   by www.eurekalert.org    
Researchers Brighten Path for Creating New Type of MRI Contrast Agent
Friday, 7 February 2020   by www.newswise.com    
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents
Wednesday, 15 November 2017   by www.eurekalert.org    
Sodium MRI May Show Biomarker for Migraine
Friday, 1 December 2017   by psychcentral.com    
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
MRI Resources 
General - Safety Training - Movies - Non-English - Sequences - Contrast Enhanced MRI
 
     1 - 5 (of 71)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 19 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]