Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Diffusion Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Diffusion Time' found in 1 term [] and 1 definition [], (+ 17 Boolean[] results
previous     11 - 15 (of 19)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Diffusion Time' was also found in the following services: 
spacer
News  (2)  Resources  (1)  
 
Point Resolved SpectroscopyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PRESS) Point resolved spectroscopy is a multi echo single shot technique to obtain spectral data. PRESS is a 90°-180°-180° (slice selective pulses) sequence. The 90° radio frequency pulse rotates the spins in the yx-plane, followed by the first 180° pulse (spin rotation in the xz-plane) and the second 180° pulse (spin rotation in the xy-plane), which gives the signal.
With the long echo times used in PRESS, there is a better visualization of metabolites with longer relaxation times. Many of the metabolites depicted by stimulated echo technique are not seen on point resolved spectroscopy, but PRESS is less susceptible to motion, diffusion, and quantum effects and has a better SNR than stimulated echo acquisition mode (STEAM).
spacer
 
• Related Searches:
    • Spectrometer
    • Special Imaging
    • Pulse, 90°
    • Spectra
    • Spectroscopy
 
Further Reading:
  Basics:
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
MRI Resources 
Mobile MRI - Supplies - Colonography - Collections - Process Analysis - Devices
 
Perfusion ImagingForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 
Radiology-tip.comradPerfusion Scintigraphy
spacer
Medical-Ultrasound-Imaging.comBolus Injection
spacer

• View the DATABASE results for 'Perfusion Imaging' (16).Open this link in a new window


• View the NEWS results for 'Perfusion Imaging' (3).Open this link in a new window.
 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
MRI Resources 
Stimulator pool - Bioinformatics - Breast MRI - MRI Physics - Societies - Service and Support
 
Sensitivity EncodingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(SENSE) A MRI technique for relevant scan time reduction. The spatial information related to the coils of a receiver array are utilized for reducing conventional Fourier encoding. In principle, SENSE can be applied to any imaging sequence and k-space trajectories. However, it is particularly feasible for Cartesian sampling schemes. In 2D Fourier imaging with common Cartesian sampling of k-space sensitivity encoding by means of a receiver array enables to reduce the number of Fourier encoding steps.
SENSE reconstruction without artifacts relies on accurate knowledge of the individual coil sensitivities. For sensitivity assessment, low-resolution, fully Fourier-encoded reference images are required, obtained with each array element and with a body coil.
The major negative point of parallel imaging techniques is that they diminish SNR in proportion to the numbers of reduction factors. R is the factor by which the number of k-space samples is reduced. In standard Fourier imaging reducing the sampling density results in the reduction of the FOV, causing aliasing. In fact, SENSE reconstruction in the Cartesian case is efficiently performed by first creating one such aliased image for each array element using discrete Fourier transformation (DFT).
The next step then is to create a full-FOV image from the set of intermediate images. To achieve this one must undo the signal superposition underlying the fold-over effect. That is, for each pixel in the reduced FOV the signal contributions from a number of positions in the full FOV need to be separated. These positions form a Cartesian grid corresponding to the size of the reduced FOV.
The advantages are especially true for contrast-enhanced MR imaging such as dynamic liver MRI (liver imaging) , 3 dimensional magnetic resonance angiography (3D MRA), and magnetic resonance cholangiopancreaticography (MRCP).
The excellent scan speed of SENSE allows for acquisition of two separate sets of hepatic MR images within the time regarded as the hepatic arterial-phase (double arterial-phase technique) as well as that of multidetector CT.
SENSE can also increase the time efficiency of spatial signal encoding in 3D MRA. With SENSE, even ultrafast (sub second) 4D MRA can be realized.
For MRCP acquisition, high-resolution 3D MRCP images can be constantly provided by SENSE. This is because SENSE resolves the presence of the severe motion artifacts due to longer acquisition time. Longer acquisition time, which results in diminishing image quality, is the greatest problem for 3D MRCP imaging.
In addition, SENSE reduces the train of gradient echoes in combination with a faster k-space traversal per unit time, thereby dramatically improving the image quality of single shot echo planar imaging (i.e. T2 weighted, diffusion weighted imaging).
spacer

• View the DATABASE results for 'Sensitivity Encoding' (12).Open this link in a new window

 
Further Reading:
  News & More:
Image Characteristics and Quality
   by www.sprawls.org    
Searchterm 'Diffusion Time' was also found in the following services: 
spacer
News  (2)  Resources  (1)  
 
Clariscan™InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
An iron-based contrast agent with large molecular size, which prevents diffusion into body tissues and will be developed for MR imaging of the liver (taken up by macrophages), tumor microvasculature and microvessel permeability. The blood half live of the particles with 11-20 nm diameter is 3-4 hours.
At this time the development of Clariscan™ is discontinued.

See also NC100150 Injection and Ultrasmall Superparamagnetic Iron Oxide.
Drug Information and Specification
NAME OF COMPOUND
Feruglose, PEG-feron, USPIO, NC100150
DEVELOPER
CENTRAL MOIETY
Fe
CONTRAST EFFECT
T2, Predominantly negative enhancement
R1=20, R2=35, B0=0.5T
PHARMACOKINETIC
Intravascular
CONCENTRATION
29.8 mg Fe/mL
PREPARATION
Suspend in an isotonic glucose solution
INDICATION
Cardiovascular
DEVELOPMENT STAGE
?
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
spacer

• View the DATABASE results for 'Clariscan™' (6).Open this link in a new window

 
Further Reading:
  News & More:
GE Healthcare expands MRI contrast media product range in Europe with launch of macrocyclic agent ClariscanTM
Wednesday, 1 March 2017   by www.businesswire.com    
GE Healthcare announces FDA approval of macrocyclic MRI contrast agent Clariscan
Monday, 4 November 2019   by www.itnonline.com    
MRI Resources 
Artifacts - Anatomy - MRI Reimbursement - Knee MRI - Databases - Calculation
 
Bipolar Gradient Pulse
 
Bipolar gradients are two gradients with the same magnitude but opposite gradient direction. A bipolar gradient pulse is produced if one of the bipolar gradients is switched e.g., in negative direction and then switched in the opposite direction for an equivalent amount of time.
Bipolar gradients are used e.g. in phase contrast and diffusion weighted sequences. A bipolar gradient pulse pair produces a phase shift, which depends on the velocity component along this gradient. Motion along a bipolar gradient pulse pair results in a flow-induced phase shift of the transverse magnetization. The bipolar gradient pulse pair will not affect stationary spins. The amount of phase shifts depends on the area of each gradient pulse, and distance between the pulses. An echo occurring after such a gradient is flow compensated for velocity. A slight shift in the balance of this gradient will introduce a defined flow sensitivity of the pulse sequence.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Bipolar Gradient Pulse' (7).Open this link in a new window

MRI Resources 
MR Guided Interventions - PACS - Supplies - Stimulator pool - Patient Information - Movies
 
previous      11 - 15 (of 19)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 25 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]