Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Number of AcQuisition' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Number of AcQuisition' found in 0 term [] and 3 definitions [], (+ 17 Boolean[] results
1 - 5 (of 20)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Number of AcQuisition' was also found in the following service: 
spacer
News  (1)  
 
Signal Averaging
 
A signal to noise improvement method that is accomplished by taking the average of several FID`s made under similar conditions to suppress the effects of random variations or random artifacts. It is a common method to increase the SNR by averaging several measurements of the signal.
The number of averages is also referred to as the number of excitations (NEX) or the number of acquisitions (NSA). Doubling the number of acquisitions will increase the SNR by √2. The approximate amount of improvement in signal to noise (SNR) ratio is calculated as the square root of the number of excitations.
By using multiple averages, respiratory motion can be reduced in the same way that multiple averages increase the signal to noise ratio. NEX/NSA will increase SNR but will not affect contrast unless the tissues are being lost in noise (low CNR). Scan time scales directly with NEX/NSA and SNR as the square root of NEX/NSA.
The use of phase array coils allows the number of signal averages to be decreased with their superior SNR and resolution, thereby decreasing scan time.
spacer
 
• Share the entry 'Signal Averaging':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Averaging
    • Image Quality
    • Signal to Noise Ratio
    • Partial Averaging
    • Number of Excitations
MRI Resources 
MRI Physics - Movies - Libraries - DICOM - Education - Brain MRI
 
Phase Oversampling
 
The data acquisition beyond the FOV in phase encoding direction, with doubling the number of acquisitions and the scan time.

See also Oversampling and Aliasing Artifact.
spacer
MRI Resources 
Spine MRI - Fluorescence - Databases - Directories - Pathology - DICOM
 
Signal to Noise Ratio
 
(SNR or S/N) The signal to noise ratio is used in MRI to describe the relative contributions to a detected signal of the true signal and random superimposed signals ('background noise') - a criterion for image quality.
One common method to increase the SNR is to average several measurements of the signal, on the expectation that random contributions will tend to cancel out. The SNR can also be improved by sampling larger volumes (increasing the field of view and slice thickness with a corresponding loss of spatial resolution) or, within limits, by increasing the strength of the magnetic field used. Surface coils can also be used to improve local signal intensity. The SNR will depend, in part, on the electrical properties of the sample or patient being studied. The SNR increases in proportion to voxel volume (1/resolution), the square root of the number of acquisitions (NEX), and the square root of the number of scans (phase encodings). SNR decreases with the field of view squared (FOV2) and wider bandwidths. See also Signal Intensity and Spin Density.

Measuring SNR:
Record the mean value of a small ROI placed in the most homogeneous area of tissue with high signal intensity (e.g. white matter in thalamus). Calculate the standard deviation for the largest possible ROI placed outside the object in the image background (avoid ghosting/aliasing or eye movement artifact regions).
The SNR is then:
Mean Signal/Standard Deviation of Background Noise
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
      

 
spacer

• View the DATABASE results for 'Signal to Noise Ratio' (48).Open this link in a new window


• View the NEWS results for 'Signal to Noise Ratio' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
Picture-Perfect Particles Enhance MRI Signal
Friday, 13 April 2012   by cen.acs.org    
Researchers design 'intelligent' metamaterial to make MRIs affordable and accessible
Tuesday, 5 November 2019   by phys.org    
Metamaterials boost sensitivity of MRI machines
Thursday, 14 January 2016   by www.eurekalert.org    
Optimizing Musculoskeletal MR
   by rad.usuhs.mil    
Searchterm 'Number of AcQuisition' was also found in the following service: 
spacer
News  (1)  
 
BandwidthForum -
related threads
 
(BW) Bandwidth is a measure of frequency range, the range between the highest and lowest frequency allowed in the signal. For analog signals, which can be mathematically viewed as a function of time, bandwidth is the width, measured in Hertz of a frequency range in which the signal's Fourier transform is nonzero.
The receiver (or acquisition) bandwidth (rBW) is the range of frequencies accepted by the receiver to sample the MR signal. The receiver bandwidth is changeable (see also acronyms for 'bandwidth' from different manufacturers) and has a direct relationship to the signal to noise ratio (SNR) (SNR = 1/squareroot (rBW). The bandwidth depends on the readout (or frequency encoding) gradient strength and the data sampling rate (or dwell time).
Bandwidth is defined by BW = Sampling Rate/Number of Samples.
A smaller bandwidth improves SNR, but can cause spatial distortions, also increases the chemical shift. A larger bandwidth reduces SNR (more noise from the outskirts of the spectrum), but allows faster imaging.
The transmit bandwidth refers to the RF excitation pulse required for slice selection in a pulse sequence. The slice thickness is proportional to the bandwidth of the RF pulse (and inversely proportional to the applied gradient strength). Lowering the pulse bandwidth can reduce the slice thickness.
mri safety guidance
Image Guidance
A higher bandwidth is used for the reduction of chemical shift artifacts (lower bandwidth - more chemical shift - longer dwell time - but better signal to noise ratio). Narrow receive bandwidths accentuate this water fat shift by assigning a smaller number of frequencies across the MRI image. This effect is much more significant on higher field strengths. At 1.5 T, fat and water precess 220 Hz apart, which results in a higher shift than in Low Field MRI.
Lower bandwidth (measured in Hz) = higher water fat shift (measured in pixel shift).

See also Aliasing, Aliasing Artifact, Frequency Encoding, and Chemical Shift Artifact.
spacer

• View the DATABASE results for 'Bandwidth' (19).Open this link in a new window

 
Further Reading:
  Basics:
Bandwidth
   by en.wikipedia.org    
  News & More:
Automated Quality Assurance for Magnetic Resonance Image with Extensions to Diffusion Tensor Imaging(.pdf)
   by scholar.lib.vt.edu    
A Real-Time Navigator Approach to Compensating for Motion Artifacts in Coronary Magnetic Resonance Angiography
   by www.cs.nyu.edu    
MRI Resources 
Anatomy - Service and Support - MR Guided Interventions - Spectroscopy pool - Online Books -
 
Chemical Shift ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Spectroscopy pool -
 
(CSI) Chemical shift imaging is an extension of MR spectroscopy, allowing metabolite information to be measured in an extended region and to add the chemical analysis of body tissues to the potential clinical utility of Magnetic Resonance. The spatial location is phase encoded and a spectrum is recorded at each phase encoding step to allow the spectra acquisition in a number of volumes covering the whole sample. CSI provides mapping of chemical shifts, analog to individual spectral lines or groups of lines.
Spatial resolution can be in one, two or three dimensions, but with long acquisition times od full 3D CSI. Commonly a slice-selected 2D acquisition is used. The chemical composition of each voxel is represented by spectra, or as an image in which the signal intensity depends on the concentration of an individual metabolite. Alternatively frequency-selective pulses excite only a single spectral component.
There are several methods of performing chemical shift imaging, e.g. the inversion recovery method, chemical shift selective imaging sequence, chemical shift insensitive slice selective RF pulse, the saturation method, spatial and chemical shift encoded excitation and quantitative chemical shift imaging.

See also Magnetic Resonance Spectroscopy.
spacer

• View the DATABASE results for 'Chemical Shift Imaging' (6).Open this link in a new window

 
Further Reading:
  Basics:
1H MR Spectroscopy and Chemical Shift Imaging of the In Vivo Brain at 7 Tesla
Sunday, 26 November 2006   by tobias-lib.uni-tuebingen.de    
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
  News & More:
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
mDIXON being developed to simplify and accelerate liver MRI
September 2010   by incenter.medical.philips.com    
MRI Resources 
MR Guided Interventions - Spectroscopy pool - Contrast Agents - Veterinary MRI - Coils -
 
     1 - 5 (of 20)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 10 November 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]