Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Bandwidth' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Bandwidth' found in 1 term [] and 19 definitions []
1 - 5 (of 20)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Bandwidth' was also found in the following services: 
spacer
Forum  (18)  
 
BandwidthForum -
related threads
 
(BW) Bandwidth is a measure of frequency range, the range between the highest and lowest frequency allowed in the signal. For analog signals, which can be mathematically viewed as a function of time, bandwidth is the width, measured in Hertz of a frequency range in which the signal's Fourier transform is nonzero.
The receiver (or acquisition) bandwidth (rBW) is the range of frequencies accepted by the receiver to sample the MR signal. The receiver bandwidth is changeable (see also acronyms for 'bandwidth' from different manufacturers) and has a direct relationship to the signal to noise ratio (SNR) (SNR = 1/squareroot (rBW). The bandwidth depends on the readout (or frequency encoding) gradient strength and the data sampling rate (or dwell time).
Bandwidth is defined by BW = Sampling Rate/Number of Samples.
A smaller bandwidth improves SNR, but can cause spatial distortions, also increases the chemical shift. A larger bandwidth reduces SNR (more noise from the outskirts of the spectrum), but allows faster imaging.
The transmit bandwidth refers to the RF excitation pulse required for slice selection in a pulse sequence. The slice thickness is proportional to the bandwidth of the RF pulse (and inversely proportional to the applied gradient strength). Lowering the pulse bandwidth can reduce the slice thickness.
mri safety guidance
Image Guidance
A higher bandwidth is used for the reduction of chemical shift artifacts (lower bandwidth - more chemical shift - longer dwell time - but better signal to noise ratio). Narrow receive bandwidths accentuate this water fat shift by assigning a smaller number of frequencies across the MRI image. This effect is much more significant on higher field strengths. At 1.5 T, fat and water precess 220 Hz apart, which results in a higher shift than in Low Field MRI.
Lower bandwidth (measured in Hz) = higher water fat shift (measured in pixel shift).

See also Aliasing, Aliasing Artifact, Frequency Encoding, and Chemical Shift Artifact.
spacer
 
• Share the entry 'Bandwidth':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Low Field MRI
    • Signal Intensity
    • Field Strength
    • Artifact
    • Spin
 
Further Reading:
  Basics:
Bandwidth
   by en.wikipedia.org    
  News & More:
Automated Quality Assurance for Magnetic Resonance Image with Extensions to Diffusion Tensor Imaging(.pdf)
   by scholar.lib.vt.edu    
A Real-Time Navigator Approach to Compensating for Motion Artifacts in Coronary Magnetic Resonance Angiography
   by www.cs.nyu.edu    
Searchterm 'Bandwidth' was also found in the following service: 
spacer
Ultrasound  (9) Open this link in a new window
Sample Imperfection (Artifact)InfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Sample imperfection
DESCRIPTION
Shifts of the signal in the phase encoding direction
REASON
Distorting the k-space trajectory, reduced bandwidth
HELP
Fat suppression, more excitations
Artifacts either by distorting the k-space trajectory (i.e. due to imperfect shimming) or as a consequence of the reduced bandwidth in the phase encode direction, commonly with EPI sequences.
While a standard spin warp-based sequence has an infinitely large bandwidth in the phase encode direction (about 1 or 2 kH), the bandwidth in EPI is related to the time between the gradient echoes (about a millisecond).
Hence even small frequency offsets can result in significant shifts of the signal in the phase encoding direction. Segmentation can introduce ghosting if there are significant difference in the amplitude and phase of the signal. This can be a particular problem when trying to acquire the segments in rapid succession.
mri safety guidance
Image Guidance
Suitable choices of excitation schemes and/or subsequent correction can help to reduce this artifact. The signal from fat can easily be offset by a large fraction of the FOV, and must be suppressed. The effect of frequency offsets can be reduced by collecting data with more than one excitation, which effectively increases the bandwidth in the phase encoding direction.
spacer
MRI Resources 
Universities - Education pool - Colonography - Research Labs - Shoulder MRI - Societies
 
Black Boundary ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Black boundary, dark boundary, contour, chemical shift, relief
DESCRIPTION
Black contours at boundaries
Black boundary artifacts are black lines following voxels where both water and fat protons are present in the same voxel. This artifact arise along the boundary of organs or tissues perpendicular to the frequency encoding direction, and occurs preferentially in gradient echo sequences with out of phase echo times.
mri safety guidance
Image Guidance
Fat suppression techniques eliminate this artifact. For artifact reducing helps a smaller water fat shift (high bandwidth), a higher matrix or/and an in phase TE.

See also Chemical Shift Artifact.
spacer

• View the DATABASE results for 'Black Boundary Artifact' (4).Open this link in a new window

 
Further Reading:
  Basics:
What is chemical shift artefact? Why does it occur? How many Hz at 1.5 T?
   by www.revisemri.com    
Searchterm 'Bandwidth' was also found in the following services: 
spacer
Forum  (18)  
 
Chemical Shift ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Chemical shift, black boundary, spatial misregistration, relief
DESCRIPTION
Black or bright band
During frequency encoding, fat protons precess slower than water protons in the same slice because of their magnetic shielding. Through the difference in resonance frequency between water and fat, protons at the same location are misregistrated (dislocated) by the Fourier transformation, when converting MRI signals from frequency to spatial domain. This chemical shift misregistration cause accentuation of any fat-water interfaces along the frequency axis and may be mistaken for pathology. Where fat and water are in the same location, this artifact can be seen as a bright or dark band at the edge of the anatomy.
Protons in fat and water molecules are separated by a chemical shift of about 3.5 ppm. The actual shift in Hertz (Hz) depends on the magnetic field strength of the magnet being used. Higher field strength increases the misregistration, while in contrast a higher gradient strength has a positive effect. For a 0.3 T system operating at 12.8 MHz the shift will be 44.8 Hz compared with a 223.6 Hz shift for a 1.5 T system operating at 63.9 MHz.
mri safety guidance
Image Guidance
For artifact reduction helps a smaller water fat shift (higher bandwidth), a higher matrix, an in phase TE or a spin echo technique. Since the misregistration offset is present in the read out axis the patient may be rescanned with this axis parallel to the fat-water interface. Steeper gradient may be employed to reduce the chemical shift offset in mm. Another strategy is to employ specialized pulse sequences such as fat saturation or inversion recovery imaging. Fat suppression techniques eliminate chemical shift artifacts caused by the lack of fat signal.

See also Black Boundary Artifact and Magnetic Resonance Spectroscopy.
spacer

• View the DATABASE results for 'Chemical Shift Artifact' (7).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
  News & More:
What is chemical shift artefact? Why does it occur? How many Hz at 1.5 T?
   by www.revisemri.com    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
Searchterm 'Bandwidth' was also found in the following service: 
spacer
Ultrasound  (9) Open this link in a new window
Double Inversion Recovery T1 MeasurementInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DIR or DIRT1) Double inversion recovery T1 measurement is a T1 weighted black blood MRA sequence in which the signal from blood is suppressed. The inversion time to suppress blood is described as the duration between the initial inversion pulse and time point that the longitudinal magnetization of blood reaches the zero point. The readout starts at the blood suppression inversion time (BSP TI) and blood in the imaging slice gives no signal. This inversion time is around 650 ms with a 60 beat per minute heart rate at 1.5 T.
The TI can be decreased by using a wider receive bandwidth, shorter echo train length and/or narrow trigger window. Wide bandwidth also decreases the blurring caused by long echo trains at the expense of signal to noise ratio. In case of in plane or slow flow the suppression of the signal from blood may be incomplete. With increased TE or change of the image plane the blood suppression can be improved.
Double inversion recovery is a breath hold technique with one image per acquisition used in cardiovascular imaging. The patient is instructed to hold the breath in expiration (if not possible also inspiration can be taken), so that the end diastolic volume in the cardiac chambers would be the same during entire scanning. DIR provides fine details of the boundary between the lumen and the wall of the cardiac chambers and main vascular and heart structures, pericardium, and mediastinal tissues.
 
Images, Movies, Sliders:
 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Double Inversion Recovery T1 Measurement' (2).Open this link in a new window

 
Further Reading:
  News & More:
Artificial double inversion recovery images can substitute conventionally acquired images: an MRI-histology study
Wednesday, 16 February 2022   by www.nature.com    
MRI Resources 
Supplies - MR Guided Interventions - MRCP - Mass Spectrometry - Implant and Prosthesis - Breast Implant
 
     1 - 5 (of 20)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]