Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Meter' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Meter' found in 5 terms [] and 130 definitions []
previous     61 - 65 (of 135)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Meter' was also found in the following services: 
spacer
News  (31)  Resources  (36)  Forum  (34)  
 
Fat SuppressionForum -
related threads
 
Fat suppression is the process of utilizing specific MRI parameters to remove the deleterious effects of fat from the resulting images , e.g. with STIR, FAT SAT sequences, water selective (PROSET WATS - water only selection, also FATS - fat only selection possible) excitation techniques, or pulse sequences based on the Dixon method.
Spin magnetization can be modulated by using special RF pulses. CHESS or its variations like SPIR, SPAIR (Spectral Selection Attenuated Inversion Recovery) and FAT SAT use frequency selective excitation pulses, which produce fat saturation.
Fat suppression techniques are nearly used in all body parts and belong to every standard MRI protocol of joints like knee, shoulder, hips, etc.
mri safety guidance
Image Guidance
Imaging of, e.g. the foot can induce bad fat suppression with SPIR/FAT SAT due to the asymmetric volume of this body part. The volume of the foot alters the magnetic field to a different degree than the smaller volume of the lower leg affecting the protons there. There is only a small band of tissue where the fat protons are precessing at the frequency expected, resulting in frequency selective fat saturation working only in that area. This can be corrected by volume shimming or creating a more symmetrical volume being imaged with water bags.
Even with their longer scan time and motion sensitivity, STIR (short T1/tau inversion recovery) sequences are often the better choice to suppress fat. STIR images are also preferred because of the decreased sensitivity to field inhomogeneities, permitting larger fields of views when compared to fat suppressed images and the ability to image away from the isocenter.
See also Knee MRI.
Sequences based on Dixon turbo spin echo (fast spin echo) can deliver a significant better fat suppression than conventional TSE/FSE imaging.
 
Images, Movies, Sliders:
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 MRI Orbita T2 FatSat  Open this link in a new window
    
 Knee MRI Sagittal STIR 001  Open this link in a new window
 MRI - Anatomic Imaging of the Ankle 3  Open this link in a new window
    
SlidersSliders Overview

 
spacer
 
• Related Searches:
    • Out of Phase
    • Short T1 Inversion Recovery
    • Knee MRI
    • Fat Saturation
    • Spectral Presaturation Inversion Recovery
 
Further Reading:
  Basics:
Techniques of Fat Suppression(.pdf)
   by cds.ismrm.org    
  News & More:
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
Ultrashort echo time (UTE) MRI of the spine in thalassaemia
February 2004   by bjr.birjournals.org    
Searchterm 'Meter' was also found in the following services: 
spacer
Radiology  (40) Open this link in a new windowUltrasound  (53) Open this link in a new window
Flow CompensationInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.
 
Flow compensation is based on the principle of even echo rephasing and a function of specific pulse sequences, wherein the application of strategic gradient pulses can compensate for the objectionable spin phase effects of flow motion. Gradient moment nulling of the first order of flow is another adjustment for the reduction of flow artifacts.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Strategic gradient pulses are integrated in special sequences (e.g. CRISP, Complex Rephasing Integrated with Surface Probes) and for the most sequences flow compensation is an optional parameter.
spacer

• View the DATABASE results for 'Flow Compensation' (14).Open this link in a new window

 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Flow comp off: An easy technique to confirm CSF flow within syrinx and aqueduct
Wednesday, 2 January 2013   by medind.nic.in    
MRI Resources 
Spine MRI - Diffusion Weighted Imaging - Pathology - Education pool - Nerve Stimulator - Pregnancy
 
G-SCANInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.esaote.de/04_kernspin/gscan/gscan.htm From Esaote S.p.A.; Esaote introduced the new G-SCAN at the RSNA in Dec. 2004. The G-SCAN covers almost all musculoskeletal applications including the spine. The tilting gantry is designed for scanning in weight-bearing positions. This unique MRI scanner is developed in line with the Esaote philosophy of creating high quality MRI systems that are easy to install and that have a low breakeven point.
Device Information and Specification
CLINICAL APPLICATION
CONFIGURATION
Spine, extremity, shoulder, flex coil, knee dual phased array, ankle//foot dual phased array, hand//wrist dual phased array
PULSE SEQUENCES
SE, GE, IR, STIR, TSE, 3D CE, GE-STIR, 3D GE, ME, TME, HSE
IMAGING MODES
Single, multislice, volume study, fast scan, multi slab, cine
FOV
100 up to 350 mm, 25 mm displayed
512 x 512
MEASURING MATRIX
256 x 256 maximum
MAGNET TYPE
Permanent
BORE DIAMETER
or W x H
33 cm H, open
POWER REQUIREMENTS
100/110/200/220/230/240 V
STRENGTH
25 mT/m
5-GAUSS FRINGE FIELD
180 cm
Passive
spacer

• View the DATABASE results for 'G-SCAN' (3).Open this link in a new window

Searchterm 'Meter' was also found in the following services: 
spacer
News  (31)  Resources  (36)  Forum  (34)  
 
GE LunarMRI Resource Directory:
 - Manufacturers -
 
www.gehealthcare.com [This entry is marked for removal.]

General Electric (GE) agreed to buy diagnostic systems maker Lunar Corp. for $150m. in March 2000. In 2004/05 it seems that the integration process into GE Healthcare has been completed. (GE Medical Systems and Amersham announced in April 2004 the completion of a share exchange acquisition of Amersham Health by GE. The result of this acquisition is the new GE Healthcare, based in the UK, totally owned by General Electric (GE).

The U.S.-based company developed bone densitometers and scanning machines that measure bone density as a way of diagnosing osteoporosis and other metabolic bone diseases. GE Lunar marketed these products worldwide.
GE Lunar announced a distribution agreement with MagneVu for domestic sales of the MagneVu 1000, a portable MRI device for orthopedic use, under the trade name Applause™.
GE Lunar was the exclusive U.S. distributor of MR-devices manufactured by Esaote S.p.A. These compact in-office MRI™ machines are designed to fit all practice sizes in orthopedic imaging and complete the range of diagnostic imaging systems.
spacer

• View the DATABASE results for 'GE Lunar' (2).Open this link in a new window

 
Further Reading:
  News & More:
Portable MR system aids diagnosis of rheumatic diseases
Sunday, 12 January 2003   by www.diagnosticimaging.com    
Searchterm 'Meter' was also found in the following services: 
spacer
Radiology  (40) Open this link in a new windowUltrasound  (53) Open this link in a new window
Half Scan
 
(HS) A method in which approximately one half of the acquisition matrix in the phase encoding direction is acquired. Half scan is possible because of symmetry in acquired data. Since negative values of phase encoded measurements are identical to corresponding positive values, only a little over half (more than 62.5%) of a scan actually needs to be acquired to replicate an entire scan. This results in a reduction in scan time at the expense of signal to noise ratio. The time reduction can be nearly a factor of two, but full resolution is maintained.
Half scan can be used when scan times are long, the signal to noise ratio is not critical and where full spatial resolution is required. Half scan is particularly appropriate for scans with a large field of view and relatively thick slices; and, in 3D scans with many slices. In some fast scanning techniques the use of Half scan enables a shorter TE thus improving contrast. For this reason, the Half scan parameter is located in the contrast menu.

More information about scan time reduction; see also partial fourier technique.
spacer

• View the DATABASE results for 'Half Scan' (4).Open this link in a new window

MRI Resources 
Chemistry - Blood Flow Imaging - Diffusion Weighted Imaging - MRI Physics - Homepages - Process Analysis
 
previous      61 - 65 (of 135)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 2 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]