Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Algorithm' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Algorithm' found in 1 term [] and 11 definitions []
previous     6 - 10 (of 12)     next
Result Pages : [1]  [2 3]
Searchterm 'Algorithm' was also found in the following services: 
spacer
News  (8)  Resources  (1)  Forum  (4)  
 
Filtering
 
Filtering deletes components of the signal, high or low frequencies, band-pass, analog or digital. Whatever pattern or algorithms can be defined for data decimation.
Low pass filtering attenuates high frequency data and passes low frequency data. The reconstructed image will look a little blurrier, but nearly similar to the original image. The blurring is caused by the fact that the high spatial frequencies are lost, which contain information about edges in the image.
High pass filtering attenuates low frequencies and passes high frequencies. Most of the objects and contrast of the original image are lost in the reconstructed image, but the edges are clearly visible because high frequency data has been preserved.
spacer
 
Further Reading:
  Basics:
MR Image Reconstruction from Raw Data
   by dukemil.egr.duke.edu    
  News & More:
The Scientist and Engineer's Guide to Digital Signal Processing
   by www.dspguide.com    
Searchterm 'Algorithm' was also found in the following services: 
spacer
Radiology  (6) Open this link in a new windowUltrasound  (2) Open this link in a new window
Maximum Intensity Projection
 
(MIP) MRA images can be processed by Maximum Intensity Projection to interactively create different projections. The MIP connects the high intensity dots of the blood vessels in three dimensions, providing an angiogram that can be viewed from any projection. Each point in the MIP represents the highest intensity experienced in that location on any partition within the imaging volume.
For complete interpretation the base slices should also be reviewed individually and with multiplanar reconstruction (MPR) software. The MIP can then be displayed in a CINE format or filmed as multiple images acquired from different projections. Although the maximum intensity projection (MIP) algorithm is sensitive to high signal from inflowing spins, it is also sensitive to high signal of any other etiology.
 
Images, Movies, Sliders:
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Maximum Intensity Projection' (5).Open this link in a new window

 
Further Reading:
  News & More:
State of the art in magnetic resonance imaging
Saturday, 1 February 2020   by physicstoday.scitation.org    
4D-Fueled AI with DCE-MRI Improves Breast Lesion Characterization
Friday, 26 February 2021   by www.diagnosticimaging.com    
MRI Resources 
Education pool - Used and Refurbished MRI Equipment - Coils - MRI Physics - Contrast Agents - Implant and Prosthesis pool
 
Multi Echo Data Image CombinationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(MEDIC) MEDIC is a heavily T2* weighted spoiled gradient echo sequence with multiple echoes. MEDIC uses a series of identically phase encoded gradient echoes, sampled per line in k-space. Unipolar frequency encoding gradients are used to achieve flow compensation and to avoid off resonance effects. For each echo the magnitude images are reconstructed and postprocessed by using a sum of squares algorithm to improve the signal to noise ratio. The increased receiver bandwidth reduces the T2* effects and impairment of the spatial resolution.
The multi echo data image combination sequence is potentially useful in imaging of cartilage in joints.
spacer

• View the DATABASE results for 'Multi Echo Data Image Combination' (2).Open this link in a new window

Searchterm 'Algorithm' was also found in the following services: 
spacer
News  (8)  Resources  (1)  Forum  (4)  
 
Parallel Imaging TechniqueForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
In parallel MR imaging, a reduced data set in the phase encoding direction(s) of k-space is acquired to shorten acquisition time, combining the signal of several coil arrays. The spatial information related to the phased array coil elements is utilized for reducing the amount of conventional Fourier encoding.
First, low-resolution, fully Fourier-encoded reference images are required for sensitivity assessment. Parallel imaging reconstruction in the Cartesian case is efficiently performed by creating one aliased image for each array element using discrete Fourier transformation. The next step then is to create an full FOV image from the set of intermediate images. Parallel reconstruction techniques can be used to improve the image quality with increased signal to noise ratio, spatial resolution, reduced artifacts, and the temporal resolution in dynamic MRI scans.
Parallel imaging algorithms can be divided into 2 main groups:
Image reconstruction produced by each coil (reconstruction in the image domain, after Fourier transform): SENSE (Sensitivity Encoding), PILS (Partially Parallel Imaging with Localized Sensitivity), ASSET.
Reconstruction of the Fourier plane of images from the frequency signals of each coil (reconstruction in the frequency domain, before Fourier transform): GRAPPA.
Additional techniques include SMASH, SPEEDER™, IPAT (Integrated Parallel Acquisition Techniques - derived of GRAPPA a k-space based technique) and mSENSE (an image based enhanced version of SENSE).
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Parallel Imaging Technique' (12).Open this link in a new window

 
Further Reading:
  Basics:
Parallel MRI Using Multiple Receiver Coils
   by www-math.mit.edu    
Coil Arrays for Parallel MRI: Introduction and Overview.
   by www.mr.ethz.ch    
  News & More:
Cardiac MRI Becoming More Widely Available Thanks to AI and Reduced Exam Times
Wednesday, 19 February 2020   by www.dicardiology.com    
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
Searchterm 'Algorithm' was also found in the following services: 
spacer
Radiology  (6) Open this link in a new windowUltrasound  (2) Open this link in a new window
Partial Fourier Technique
 
The partial Fourier technique is a modification of the Fourier transformation imaging method used in MRI in which the symmetry of the raw data in k-space is used to reduce the data acquisition time by acquiring only a part of k-space data.
The symmetry in k-space is a basic property of Fourier transformation and is called Hermitian symmetry. Thus, for the case of a real valued function g, the data on one half of k-space can be used to generate the data on the other half.
Utilization of this symmetry to reduce the acquisition time depends on whether the MRI problem obeys the assumption made above, i.e. that the function being characterized is real.
The function imaged in MRI is the distribution of transverse magnetization Mxy, which is a vector quantity having a magnitude, and a direction in the transverse plane. A convenient mathematical notation is to use a complex number to denote a vector quantity such as the transverse magnetization, by assigning the x'-component of the magnetization to the real part of the number and the y'-component to the imaginary part. (Sometimes, this mathematical convenience is stretched somewhat, and the magnetization is described as having a real component and an imaginary component. Physically, the x' and y' components of Mxy are equally 'real' in the tangible sense.)
Thus, from the known symmetry properties for the Fourier transformation of a real valued function, if the transverse magnetization is entirely in the x'-component (i.e. the y'-component is zero), then an image can be formed from the data for only half of k-space (ignoring the effects of the imaging gradients, e.g. the readout- and phase encoding gradients).
The conditions under which Hermitian symmetry holds and the corrections that must be applied when the assumption is not strictly obeyed must be considered.
There are a variety of factors that can change the phase of the transverse magnetization:
Off resonance (e.g. chemical shift and magnetic field inhomogeneity cause local phase shifts in gradient echo pulse sequences. This is less of a problem in spin echo pulse sequences.
Flow and motion in the presence of gradients also cause phase shifts.
Effects of the radio frequency RF pulses can also cause phase shifts in the image, especially when different coils are used to transmit and receive.
Only, if one can assume that the phase shifts are slowly varying across the object (i.e. not completely independent in each pixel) significant benefits can still be obtained. To avoid problems due to slowly varying phase shifts in the object, more than one half of k-space must be covered. Thus, both sides of k-space are measured in a low spatial frequency range while at higher frequencies they are measured only on one side. The fully sampled low frequency portion is used to characterize (and correct for) the slowly varying phase shifts.
Several reconstruction algorithms are available to achieve this. The size of the fully sampled region is dependent on the spatial frequency content of the phase shifts. The partial Fourier method can be employed to reduce the number of phase encoding values used and therefore to reduce the scan time. This method is sometimes called half-NEX, 3/4-NEX imaging, etc. (NEX/NSA). The scan time reduction comes at the expense of signal to noise ratio (SNR).
Partial k-space coverage is also useable in the readout direction. To accomplish this, the dephasing gradient in the readout direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened.
This is often used in gradient echo imaging to reduce the echo time (TE). The benefit is at the expense in SNR, although this may be partly offset by the reduced echo time. Partial Fourier imaging should not be used when phase information is eligible, as in phase contrast angiography.

See also acronyms for 'partial Fourier techniques' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Fourier Technique' (6).Open this link in a new window

MRI Resources 
Quality Advice - Non-English - Image Quality - Supplies - Manufacturers - DICOM
 
previous      6 - 10 (of 12)     next
Result Pages : [1]  [2 3]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 2 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]