Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Sound' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Sound' found in 0 term [] and 30 definitions []
previous     26 - 30 (of 30)     
Result Pages : [1 2 3 4 5 6]
Searchterm 'Sound' was also found in the following services: 
spacer
News  (85)  Resources  (56)  Forum  (20)  
 
Molecular Imaging
 
Molecular Imaging is a new diagnostic discipline to visualize biological processes.
Molecular magnetic resonance imaging (mMRI) offers the potential to image tissues at the cellular and subcellular level. Targeted MR contrast agents enhance the diagnostic specificity and range of molecular magnetic resonance imaging.
Other modalities that can be used for noninvasive molecular imaging:
Ultrasound;
optical imaging;
positron emission tomography (PET);
single photon emission computed tomography (SPECT).


See also Nanoparticle, Monocrystalline Iron Oxide Nanoparticle, Polycrystalline Iron Oxide Nanoparticles, Liposomes, Monoclonal Antibodies, Bimodal Imaging, Tumor Specific Agents, and Intracellular Contrast Agents.
spacer

• View the NEWS results for 'Molecular Imaging' (28).Open this link in a new window.
 
Further Reading:
  Basics:
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Molecular Magnetic Resonance Imaging(.pdf)
2005   by www.medical.siemens.com    
  News & More:
Smarter MRI diagnosis with nano MRI lamp
Monday, 6 February 2017   by www.eurekalert.org    
Molecular MRI technique gives early indication of cancer treatment effectiveness
Monday, 11 April 2016   by www.healthimaging.com    
Molecular imaging and radiochemistry: the importance of instrumentation. An interview with Professor Bjorn Wangler
Thursday, 4 February 2016   by www.news-medical.net    
Positron Emission Tomographic Imaging in Stroke
Monday, 28 December 2015   by www.ncbi.nlm.nih.gov    
Potential and Limitations of Oxygen-17 MR Perfusion Measurements
Monday, 1 March 2004   by www.case.edu    
MRI Resources 
Used and Refurbished MRI Equipment - Research Labs - Safety pool - Colonography - Musculoskeletal and Joint MRI - Knee MRI
 
Myocardial Late Enhancement
 
(LE) Myocardial late enhancement in contrast enhanced cardiac MRI has the ability to precisely delineate myocardial scar associated with coronary artery disease. Viability imaging implies evaluating infarcted myocardium to see whether there is enough viable tissue available for revascularization. The reversal of myocardial dysfunction is particularly relevant in patients with depressed ventricular function because revascularization improves long-term survival. In comparison to SPECT and PET imaging, myocardial late enhancement MRI demonstrates areas of delayed enhancement exactly in correlation with the infarcted region.
Viability on cardiac MRI (CMR) is based on the fact that all infarcts enhance vividly 10-15 minutes after the administration of intravenous paramagnetic contrast agents. This enhancement represents the accumulation of gadolinium in the extracellular space, due to the loss of membrane integrity in the infarcted tissue. This phenomenon of delayed hyperenhancement has been proven to correlate with the actual extent of the infarct.
MRI myocardial late enhancement can quantify the size, location and transmural extent of the infarct. If the transmural extent of the infarct (region of enhancement on MRI) is less than 50% of the wall thickness, there will be improved contractility in that segment following revascularization. In areas of hypokinesia, if there is a rim of "black" or non-infarcted myocardium that is not contracting well, it indicates the presence of hibernating myocardium, which is likely to improve after revascularization of the artery supplying that particular territory.
The total duration of a myocardial late enhancement MR imaging protocol for viability is approximately 30 minutes, including scout images, first-pass images, cine images in two planes, and delayed myocardial enhancement images. In order to assess viable myocardium, the gadolinium contrast agent is injected at a dose of 0.15 to 0.2 mmol/kg. After about 10 minutes, short axis and long axis views (see cardiac axes) of the heart are obtained using an inversion prepared ECG gated gradient echo sequence. The inversion pulse is adjusted to suppress normal myocardium. Areas of nonviable myocardium retain extremely high signal intensity, black areas show normal tissue.

For Ultrasound Imaging (USI) see Myocardial Contrast Echocardiography at Medical-Ultrasound-Imaging.com.
spacer

• View the DATABASE results for 'Myocardial Late Enhancement' (6).Open this link in a new window

 
Further Reading:
  Basics:
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
Prediction of Myocardial Viability by MRI
1999   by circ.ahajournals.org    
Geron Demonstrates hESC-derived cardiomyocytes improve heart function after myocardial infarction
Monday, 27 August 2007   by www.brightsurf.com    
MRI Resources 
Chemistry - Case Studies - Functional MRI - Musculoskeletal and Joint MRI - Cochlear Implant - Movies
 
Quadrature Detection
 
Quadrature detection is used in magnetic resonance imaging as well as in Doppler ultrasound and is also called quadrature demodulation or phase quadrature technique.
With this phase sensitive demodulation technique the complex demodulated signal is separated into two components. One is called the real channel; the second part is called the imaginary channel and is located 90° away from the real channel. The signals from both channels are combined to produce a single set of quadrature detected real and imaginary spectra. In MRI, the parts of the demodulated MR signal are further processed by Fourier transformation analysis. All information on the MR signal components e.g. amplitude, phase, and frequency is given by this quadrature detection combined with Fourier analysis.
spacer

• View the DATABASE results for 'Quadrature Detection' (2).Open this link in a new window

Searchterm 'Sound' was also found in the following services: 
spacer
News  (85)  Resources  (56)  Forum  (20)  
 
Shoulder MRI
 
MRI of the shoulder with its excellent soft tissue discrimination, and high spatial resolution offers the best noninvasive way to study the shoulder. MRI images of the bone, muscles and tendons of the glenohumeral joint can be obtained in any oblique planes and projections. MRI gives excellent depiction of rotator cuff tears, injuries to the biceps tendon and damage to the glenoid labrum. Shoulder MRI is better than ultrasound imaging at depicting structural changes such as osteophytic spurs, ligament thickening, and acromial shape that may have predisposed to tendon degeneration.
A dedicated shoulder coil and careful patient positioning in external rotation with the shoulder as close as reasonably possible to the center of the magnet is necessary for a good image quality. If possible, the opposite shoulder should be lifted up, so that the patient lies on the imaged shoulder in order to rotate and fix this shoulder to reduce motion during breathing.
Axial, coronal oblique, and sagittal oblique proton density with fat suppression, T2 and T1 provide an assessment of the rotator cuff, biceps, deltoid, acromio-clavicular joint, the glenohumeral joint and surrounding large structures. If a labral injury is suspected, a Fat Sat gradient echo sequence is recommended. In some cases, a direct MR shoulder arthrogram with intra-articular injection of dilute gadolinium or an indirect arthrogram with imaging 20 min. after intravenous injection may be helpful.

See also Imaging of the Extremities.
 
Images, Movies, Sliders:
 Anatomic Imaging of the Shoulder  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
Radiology-tip.comradArthrography
spacer
Medical-Ultrasound-Imaging.comLow Intensity Pulsed Ultrasound,  Musculoskeletal and Joint Ultrasound
spacer

• View the DATABASE results for 'Shoulder MRI' (3).Open this link in a new window


• View the NEWS results for 'Shoulder MRI' (1).Open this link in a new window.
 
Further Reading:
  News & More:
The Spectrum of Shoulder Pathologies on Magnetic Resonance Imaging: A Pictorial Review
Wednesday, 6 September 2023   by www.cureus.com    
MRI costs wide-ranging
Thursday, 14 April 2011   by www.chieftain.com    
MRE Could Provide A Definitive Diagnosis For People With Muscle Pain, Study Shows
Friday, 30 November 2007   by www.sciencedaily.com    
Peer-Reviewed Study Concludes The FONAR UPRIGHT™ MRI Could Serve as the “Standard Procedure of Care” for Pediatric Shoulder Malady
Wednesday, 30 May 2007   by www.fonar.com    
MRI Resources 
Societies - Fluorescence - Functional MRI - Sequences - MRI Centers - Services and Supplies
 
Siemens Medical Systems
 
www.siemensmedical.com The range of diagnostics and imaging systems of Siemens Medical Systems covers ultrasound, nuclear medicine, angiography, magnetic resonance, computer tomography and patient monitoring. Siemens is one of the three leading MRI manufacturers, which together account for approximately 80 percent of the MRI machines installed worldwide. Siemens currently offers the Allegra 3T MRI, which is for head scanning only, but the company will also be launching the Trio MRI, a 3T whole body scanner.
Siemens has formed partnerships with more than ten research institutions and private practitioners to define a comprehensive MRI examination and compare MR to currently established cardiovascular modalities, thereby defining optimal diagnosis and treatment.

MRI Scanners:

0.2T to 1.0T:
1.5T:
3.0T to 7.0T:
Hybrid Scanners:
Mobile Solutions:
MAGNETOM Espree 1.5T, MAGNETOM Avanto 1.5T and MAGNETOM ESSENZA 1.5T are also offered by Siemens on certified trailers.
Contact Information
MAIL
Siemens Medical Solutions Health Services Corporation
51 Valley Stream Parkway
Malvern, PA 19355
USA
PHONE
+1 610 219 6300
FAX
+1 610 219 8266
spacer

• View the DATABASE results for 'Siemens Medical Systems' (14).Open this link in a new window


• View the NEWS results for 'Siemens Medical Systems' (3).Open this link in a new window.
 
Further Reading:
  Basics:
Siemens Announces FDA Clearance of Magnetom Amira MRI Scanner
Thursday, 21 January 2016   by www.itnonline.com    
  News & More:
siemens-healthineers-and-ucsf-research-partnership-proves-significant-energy-cost
Thursday, 27 April 2023   by www.itnonline.com    
KinetiCor Wins FDA 510(k) Clearance for Motion Correction System for Siemens MAGNETOM Skyra 3T Scanner
Wednesday, 19 February 2020   by finance.yahoo.com    
Ultra-Fast MRI Is Effective in Acute Neurological Emergency Diagnoses
Wednesday, 15 January 2020   by www.diagnosticimaging.com    
Siemens Working on Automated Planning of Cardiac MRI Views
Friday, 8 March 2013   by www.medgadget.com    
The Most Exciting Equation in MRI Siemens MAGNETOM Verio Combines High-Field Imaging and a 70-cm Open-Bore Design
Wednesday, 31 October 2007   by www.biospace.com    
MRI Resources 
Quality Advice - MRI Physics - Most Wanted - Societies - MR Guided Interventions - Image Quality
 
previous      26 - 30 (of 30)     
Result Pages : [1 2 3 4 5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 6 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]