Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Net Magnetization Vector' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Net Magnetization Vector' found in 1 term [] and 4 definitions [], (+ 15 Boolean[] results
previous     6 - 10 (of 20)     next
Result Pages : [1]  [2 3 4]
MRI Resources 
Implant and Prosthesis pool - Libraries - DICOM - Sequences - Hospitals - Nerve Stimulator
 
Macroscopic Magnetization Vector
 
Net magnetic moment per unit volume (a vector quantity) of a sample in a given region, considered as the integrated effect of all the individual microscopic nuclear magnetic moments.
spacer
MRI Resources 
Non-English - Used and Refurbished MRI Equipment - Safety Products - NMR - Absorption and Emission - Safety Training
 
Magnetization Vector
 
The integration of all the individual nuclear magnetic moments, which have a positive magnetization value at equilibrium versus those in a random state.
spacer

• View the DATABASE results for 'Magnetization Vector' (18).Open this link in a new window

MRI Resources 
Developers - Absorption and Emission - Non-English - Safety Training - Service and Support - Stent
 
Adiabatic Fast Passage
 
(AFP) Adiabatic fast passage is a NMR technique of producing rotation of the macroscopic magnetization vector by shifting the frequency of RF energy pulses (or the strength of the magnetic field) through resonance (the Larmor frequency) in a time short compared to the relaxation times. Particularly used for inversion of the spins between high and low energy states with an excess of spins in the higher energy level. A continuous wave NMR technique used in e.g., MR spectroscopy.
spacer

• View the DATABASE results for 'Adiabatic Fast Passage' (3).Open this link in a new window

 
Further Reading:
  Basics:
Adiabatic theorem
   by en.wikipedia.org    
  News & More:
New theory of adiabaticity developed
Tuesday, 2 December 2008   by www.upi.com    
MRI Resources 
Contrast Agents - Sequences - Nerve Stimulator - Safety pool - Abdominal Imaging - Fluorescence
 
Gradient Motion Rephasing
 
(GMR) The application of strategic gradient pulses can compensate the objectionable spin phase effects of flow motion. That means the reducing of flow effects, e.g. gradient moment nulling of the first order of flow. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. E.g. the adjustment to zero at the time TE of the net moments of the amplitude of the waveform of the magnetic field gradients with time. The zeroth moment is the area under the curve, the first moment is the 'center of gravity' etc. The aim is to minimize the phase shifts acquired by the transverse magnetization of excited nuclei moving along the gradients (including the effect of refocusing RF pulses), particularly for the reduction of image artifacts due to motion.
Also called Flow Compensation (FC), Motion Artifact Suppression Technique (MAST), Flow motion compression (STILL), Gradient Rephasing (GR), Shimadzu Motion Artifact Reduction Technique (SMART).
spacer

• View the DATABASE results for 'Gradient Motion Rephasing' (2).Open this link in a new window

 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
MRI Resources 
Mobile MRI Rental - MRI Reimbursement - Safety Products - Brain MRI - Veterinary MRI - Patient Information
 
Magnetic FieldForum -
related threads
 
(H) The region surrounding a magnet (or current carrying conductor) is equipped with certain properties like that a small magnet in such a region experiences a torque that tends to align it in a given direction. Magnetic field is a vector quantity; the direction of the field is defined as the direction that the north pole of the small magnet points when in equilibrium.
mri safety guidance
MRI Safety Guidance
A magnetic field produces a magnetizing force on a body within it. Although the dangers of large magnetic fields are largely hypothetical, this is an area of potential concern for safety limits. Formally, the forces experienced by moving charged particles, current carrying wires, and small magnets in the vicinity of magnet are due to magnetic induction (B), which includes the effect of magnetization, while the magnetic field (H) is defined so as not to include magnetization. However, both B and H are often loosely used to denote magnetic fields.
spacer

• View the DATABASE results for 'Magnetic Field' (219).Open this link in a new window


• View the NEWS results for 'Magnetic Field' (25).Open this link in a new window.
 
Further Reading:
  Basics:
Magnet basics
   by my.execpc.com    
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
Magnetic Field
   by en.wikipedia.org    
How strong are magnets?
   by my.execpc.com    
  News & More:
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
Impact of the Lorentz force on electron track structure and early DNA damage yields in magnetic resonance-guided radiotherapy
Friday, 30 September 2022   by www.nature.com    
Two stuck to MRI machine for 4 hrs
Tuesday, 11 November 2014   by www.mumbaimirror.com    
Commission proposes to revamp rules to protect EU workers from harmful electromagnetic fields
Tuesday, 14 June 2011   by finchannel.com    
Magnetic fields drive drug-loaded nanoparticles to reduce blood vessel blockages in an animal study
Monday, 19 April 2010   by www.eurekalert.org    
MRI Resources 
Movies - Nerve Stimulator - Shielding - IR - Research Labs - Portals
 
previous      6 - 10 (of 20)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 25 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]