Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'signal' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'signal' found in 11 terms [] and 357 definitions []
previous     96 - 100 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Automatic Bolus DetectionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Automatic bolus detection is used to trigger the begin of the MRI scan with the time the contrast agent reaches the region of interest. The acquisition process is started once the signal is increased in this region. There are similar methods used by the scanner manufacturer (see MRI Acronyms for Automatic Bolus Detection). After injection of the contrast agent the region of interest is monitored (e.g. with a spin echo or gradient echo sequence). When the signal increases the scan is automatically triggered or the operator is informed.

See also Abdominal Imaging, Bolus Injection, Fluoroscopic Triggering, Care Bolus, and Bolus Tracking.
spacer
 
Further Reading:
  Basics:
Fast Contrast Enhanced Imaging with Projection Reconstruction(.pdf)
   by ece.ut.ac.ir    
  News & More:
Abdominal MR angio: fast, reproducible, and safe
   by www.diagnosticimaging.com    
MRI Resources 
Education pool - - Homepages - Used and Refurbished MRI Equipment - Pregnancy - Anatomy
 
Bird Cage CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
A RF coil, often a transmit receive coil with a number of wires running along the z-direction, arranged to give a cosine current variation around the circumference of the coil, which looks like a bird cage. The bird cage coil works on a different principle to conventionally tuned local and surround coils in that it behaves like a tuned transmission line with one complete cycle of standing wave around the circumference. The frequency supply is generated by an oscillator, which is modulated to form a shaped pulse by a product detector controlled by the waveform generator. The signal must be amplified to 1000's of watts. This can be done using either solid state electronics, valves or a combination of both.
The bird cage coil design provides the best field homogeneity of all RF imaging coils.
One advantage is that it is simple to produce an exceedingly uniform B1 radio frequency field over most of the coil's volume, with the result of images with a high degree of uniformity.
A second advantage is that nodes with zero voltage occur 90° away from the driven part of the coil, thus facilitating the introduction of a second signal in quadrature, which produces a circularly polarized radio frequency field.
This type of volume coil is used for brain (head) MRI, or MR imaging of joints, such as the wrist or knees.

See also the related poll result: '3rd party coils are better than the original manufacturer coils'
 
Images, Movies, Sliders:
 Brain MRI Images T1  Open this link in a new window
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Bird Cage Coil' (4).Open this link in a new window

 
Further Reading:
  Basics:
HEAD AND NECK MRI GRADIENT COIL DESIGN
Thursday, 26 August 1999   by www.imaging.robarts.ca    
System Architecture
2003   by www.revisemri.com    
  News & More:
On the Horizon - Next Generation MRI
Wednesday, 23 October 2013   by thefutureofthings.com    
TOSHIBA INTRODUCES 32 ELEMENT COILS FOR ITS VANTAGE TITAN MR SYSTEMS
Tuesday, 9 November 2010   by medical.toshiba.com    
MRI Resources 
Coils - Musculoskeletal and Joint MRI - Anatomy - Health - Examinations - Open Directory Project
 
Blood Flow ImagingMRI Resource Directory:
 - Blood Flow Imaging -
 
MR imaging techniques capable to provide maps of cerebral activity. All these techniques are based on indirect assessment of local cerebral haemodynamics that have been demonstrated to be closely related to cerebral activity.
Two kinds of techniques have been developed:
based on the assessment of the decrease in the content of deoxyhaemoglobin in local activated tissue that can be revealed as an increase of signal on T2* and T2 weighted sequences in which deoxyhaemoglobin has low signal (see Blood Oxygenation Level Dependent Contrast)
based on the time of flight or flow-related enhancement that is revealed either directly with T1 weighted images or through the use of modified angiographic bolus tracking techniques.
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the NEWS results for 'Blood Flow Imaging' (1).Open this link in a new window.
 
Further Reading:
  News & More:
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Non-invasive MRI technique distinguishes between Alzheimer's and frontotemporal dementia
Saturday, 18 June 2005   by www.eurekalert.org    
Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Cardiac PacemakerMRI Resource Directory:
 - Safety -
 
A pacemaker is a device for internal or external battery-operated cardiac pacing to overcome cardiac arrhythmias or heart block. All implanted electronic devices are susceptible to the electromagnetic fields used in magnetic resonance imaging. Therefore, the main magnetic field, the gradient field, and the radio frequency (RF) field are potential hazards for cardiac pacemaker patients.
The pacemaker's susceptibility to static field and its critical role in life support have warranted special consideration. The static magnetic field applies force to magnetic materials. This force and torque effects rise linearly with the field strength of the MRI machines. Both, RF fields and pulsed gradients can induce voltages in circuits or on the pacing lead, which will heat up the tissue around e.g. the lead tip, with a potential risk of thermal injury.
Regulations for pacemakers provide that they have to switch to the magnet mode in static magnetic fields above 1.0 mT. In MR imaging, the gradient and RF fields may mimic signals from the heart with inhibition or fast pacing of the heart. In the magnet mode, most of the current pacemakers will pace with a fix pulse rate because they do not accept the heartsignals. However, the state of an implanted pacemaker will be unpredictable inside a strong magnetic field. Transcutaneous controller adjustment of pacing rate is a feature of many units. Some achieve this control using switches activated by the external application of a magnet to open/close the switch. Others use rotation of an external magnet to turn internal controls. The fringe field around the MRI magnet can activate such switches or controls. Such activations are a safety risk.
Areas with fields higher than 0.5 mT (5 Gauss Limit) commonly have restricted access and/or are posted as a safety risk to persons with pacemakers.
mri safety guidance
MRI Safety Guidance
A Cardiac pacemaker is because the risks, under normal circumstances an absolute contraindication for MRI procedures.
Nevertheless, with special precaution the risks can be lowered. Reprogramming the pacemaker to an asynchronous mode with fix pacing rate or turning off will reduce the risk of fast pacing or inhibition. Reducing the SAR value reduces the potential MRI risks of heating. For MRI scans of the head and the lower extremities, tissue heating also seems to be a smaller problem. If a transmit receive coil is used to scan the head or the feet, the cardiac pacemaker is outside the sending coil and possible heating is very limited.
spacer

• View the DATABASE results for 'Cardiac Pacemaker' (6).Open this link in a new window

 
Further Reading:
  Basics:
MRI in Patients with Implanted Devices: Current Controversies
Monday, 1 August 2016   by www.acc.org    
Magnetic resonance imaging in patients with cardiac pacemakers: era of MR Conditional designs
Thursday, 27 October 2011   by 7thspace.com    
  News & More:
Newer Heart Devices Safe During MRI
Monday, 23 August 2004   by www.hospimedica.com    
BIOTRONIK debuts pacemaker with continuous MRI sensor
Wednesday, 30 August 2023   by www.medicaldevice-network.com    
Patients with standard pacemakers, ICDs may safely undergo MRIs
Friday, 24 February 2017   by www.cardiovascularbusiness.com    
ITOCHU Named the Exclusive Distributor for ViewRay's MRI-Guided Radiation Therapy System in Japan
Thursday, 22 January 2015   by www.prnewswire.com    
Modern Implantable Heart Devices Safe For Use In MRI Scans
Wednesday, 16 March 2005   by www.sciencedaily.com    
MRI Resources 
Journals - Chemistry - MRA - Mobile MRI - MRI Technician and Technologist Career - Case Studies
 
Chemical Shift
 
Chemical shift depends on the nucleus and its environment and is defined as nuclear shielding / applied magnetic field. Nuclei are shielded by a small magnetic field caused by circulating electrons, termed nuclear shielding. The strength of the shield depends on the different molecular environment in that the nucleus is embedded. Nuclear shielding is the difference between the magnetic field at the nucleus and the applied magnetic field.
Chemical shift is measured in parts per million (ppm) of the resonance frequency relative to another or a standard resonance frequency.
The major part of the MR signal comes from hydrogen protons; lipid protons contribute a minor part. The chemical shift between water and fat nuclei is about 3.5 ppm (~220 Hz; 1.5T). Through this difference in resonance frequency between water and fat protons at the same location, a misregistration (dislocation) by the Fourier Transformation take place, when converting MR signals from frequency to spatial domain. This effect is called chemical shift artifact or chemical shift misregistration artifact.
spacer

• View the DATABASE results for 'Chemical Shift' (29).Open this link in a new window

 
Further Reading:
  Basics:
FUNDAMENTALS OF MRI: Part III – Forming an MR Image
   by www.e-radiography.net    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
MRI Resources 
Societies - Non-English - Examinations - Claustrophobia - Resources - MR Guided Interventions
 
previous      96 - 100 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]