Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Signa' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Signa' found in 23 terms [] and 358 definitions []
previous     31 - 35 (of 381)     next
Result Pages : [1 2 3 4 5]  [6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Signa' was also found in the following services: 
spacer
News  (60)  Resources  (16)  Forum  (78)  
 
Phase Encoding
 
The process of locating a MR signal by altering the phase of spins in one dimension with a pulsed magnetic field gradient along that dimension prior to the acquisition of the signal.
If a gradient field is briefly switched on and then off again at the beginning of the pulse sequence right after the radio frequency pulse, the magnetization of the external voxels will either precess faster or slower relative to those of the central voxels.
During readout of the signal, the phase of the xy-magnetization vector in different columns will thus systematically differ. When the x- or y- component of the signal is plotted as a function of the phase encoding step number n and thus of time n TR, it varies sinusoidally, fast at the left and right edges and slow at the center of the image. Voxels at the image edges along the phase encoding direction are thus characterized by a higher 'frequency' of rotation of their magnetization vectors than those towards the center.
As each signal component has experienced a different phase encoding gradient pulse, its exact spatial reconstruction can be specifically and precisely located by the Fourier transformation analysis. Spatial resolution is directly related to the number of phase encoding levels (gradients) used. The phase encoding direction can be chosen, e.g. whenever oblique MR images are acquired or when exchanging frequency and phase encoding directions to control wrap around artifacts.
spacer
 
• Related Searches:
    • Precession
    • Alignment
    • Spin
    • Slice Encoding
    • Magnetic Resonance
 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
Most Wanted - Software - - Fluorescence - Pacemaker - Blood Flow Imaging
 
Positive Oral Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Types of oral contrast agents with positive signal enhancement:
Combinations of these

Ideal oral contrast agents are immiscible with water, biologically inert, have a low viscosity and surface tension. Oral positive contrast agents may improve the separation of bowel loops, the detection of polyps in colon MRI or the assessment of inflammatory bowel in the small intestine. Several positive oral contrast agents are available and they are safe to use, for example gadolinium solution, ferric ammonium citrate, different oil emulsions and pediatric formula.
Unfavorably motion artifacts caused by respiration and peristalsis may be increased in MR imaging. In addition, the signal of the positive contrast medium may decrease caused by dilution in gastrointestinal (GI) secretions. With the use of contrast agents that are immiscible with water, no dilution and accompanying signal loss occur even when the contrast agent is in contact with the intraluminal contents of the GI tract. Another disadvantage may be residual substances in the bowel, resembling masses when enclosed by bright signal. In addition, positive contrast agents may have a similar signal as bright masses, which make their (e.g. lipoma) detection difficult.

See also Gastrointestinal Paramagnetic Contrast Agents, Combination Oral Contrast Agents, Gastrointestinal Diamagnetic Contrast Agents.
 
Images, Movies, Sliders:
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Positive Oral Contrast Agents' (6).Open this link in a new window

 
Further Reading:
  Basics:
Components of Oral Contrast Agent for Magnetic Resonance Imaging(.pdf)
   by www.ffcr.or.jp    
Hydro-MRI of the Small Bowel: Effect of Contrast Volume, Timing of Contrast Administration, and Data Acquisition on Bowel Distention
Sunday, 1 October 2006   by www.ajronline.org    
MRI Resources 
Guidance - - Stent - Portals - Coils - Calculation
 
Quadrature Detector
 
The quadrature detector is a part of the receiver that converts the high-frequency MRI signal to a lower frequency. This phase sensitive detector or demodulator detects the components of the signal in phase with a reference signal and 90° out of phase with the reference signal. The modulated signal contains i.e. the frequency range across the field of view encoded by the frequency encoding gradient. This may be performed by either analog or digital means.
spacer

• View the DATABASE results for 'Quadrature Detector' (7).Open this link in a new window

Searchterm 'Signa' was also found in the following services: 
spacer
News  (60)  Resources  (16)  Forum  (78)  
 
Radio Frequency CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
A coil is a large inductor with a considerable dimension and a defined wavelength, commonly used in configurations for MR imaging. The frequency of the radio frequency coil is defined by the Larmor relationship.
The MRI image quality depends on the signal to noise ratio (SNR) of the acquired signal from the patient. Several MR imaging coils are necessary to handle the diversity of applications. Large coils have a large measurement field, but low signal intensity and vice versa (see also coil diameter). The closer the coil to the object, the stronger the signal - the smaller the volume, the higher the SNR. SNR is very important in obtaining clear images of the human body. The shape of the coil depends on the image sampling. The best available homogeneity can be reached by choice of the appropriate coil type and correct coil positioning. Orientation is critical to the sensitivity of the RF coil and therefore the coil should be perpendicular to the static magnetic field.

RF coils can be differentiated by there function into three general categories:
The RF signal is in the range of 10 to 100 MHz. During a typical set of clinical image measurements, the entire frequency spectrum of interest is of the order 10 kHz, which is an extremely narrow band, considering that the center frequency is about 100 MHz. This allows the use of single-frequency matching techniques for coils because their inherent bandwidth always exceeds the image bandwidth. The multi turn solenoid, bird cage coil, single turn solenoid, and saddle coil are typically operated as the transmitter and receiver of RF energy. The surface and phased array coils are typically operated as a receive only coil.

See also the related poll result: '3rd party coils are better than the original manufacturer coils'
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Radio Frequency Coil' (9).Open this link in a new window

 
Further Reading:
  Basics:
Radio-frequency Coil Selection for MR Imaging of the Brain and Skull Base1
   by radiology.rsnajnls.org    
  News & More:
High-field MRI Coils – that work, superbly, even at 750 MHz
   by www.dotynmr.com    
Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents
Thursday, 24 December 2015   by www.ncbi.nlm.nih.gov    
MRI Resources 
MR Guided Interventions - IR - Intraoperative MRI - Absorption and Emission - Equipment - MRI Technician and Technologist Jobs
 
Receiver turn on ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Receiver turn on
DESCRIPTION
Line across the center of the image
REASON
Combination of problems
HELP
Call the service
A receiver turn on artifact (not a true MR signal) appears similarly like a FID signal artifact, except that they extend into the signal-free region, while the FID (a real MR signal) is confined to the projection of the sample along the readout axis.
mri safety guidance
Image Guidance
FID artifacts cannot occur on gradient echo images, but receiver turn on is still possible on gradient echoes.

See also FID Signal Artifact.
spacer
 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
MRI Resources 
Breast MRI - Devices - Software - Abdominal Imaging - Functional MRI - Developers
 
previous      31 - 35 (of 381)     next
Result Pages : [1 2 3 4 5]  [6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]