Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Focus' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Focus' found in 4 terms [] and 44 definitions []
previous     46 - 48 (of 48)     
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'Focus' was also found in the following services: 
spacer
News  (71)  Resources  (9)  Forum  (6)  
 
Spin Echo Multi SliceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(SEMS) This pulse sequence is composed of a 90° RF pulse followed by a 180° refocusing pulse. Both RF pulses are applied in the presence of a slice select gradient.
By choosing of different TR and TE, depending on the T1 and T2 values of the tissues, proton density, T1 weighted and T2 weighted images can be acquired.
The inversion recovery option enlarge the RF pulses with a 180° inverting pulse, applied a TI time before the beginning of the pulse sequence in order to manipulate image contrast.
See also Spin Echo Sequence.
spacer
 
Further Reading:
  Basics:
Fast Spin Echo(.pdf)
Tuesday, 24 January 2006   by www.81bones.net    
MRI Resources 
Breast MRI - Societies - Image Quality - RIS - Collections - Abdominal Imaging
 
Steady State Free PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence in which a non-zero steady state develops for both components of magnetization (transverse and longitudinal) and also a condition where the TR is shorter than the T1 and T2 times of the tissue. If the RF pulses are close enough together, the MR signal will never completely decay, implying that the spins in the transverse plane never completely dephase. The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, then the flip angle for steady state should be 45-60°.
Steady state free precession is also a method of MR excitation in which strings of RF pulses are applied rapidly and repeatedly with interpulse intervals short compared to both T1 and T2. Alternating the phases of the RF pulses by 180° can be useful. The signal reforms as an echo immediately before each RF pulse; immediately after the RF pulse there is additional signal from the FID produced by the pulse.
The strength of the FID will depend on the time between pulses (TR), the tissue and the flip angle of the pulse; the strength of the echo will additionally depend on the T2 of the tissue. With the use of appropriate dephasing gradients, the signal can be observed as a frequency-encoded gradient echo either shortly before the RF pulse or after it; the signal immediately before the RF pulse will be more highly T2 weighted. The signal immediately after the RF pulse (in a rapid series of RF pulses) will depend on T2 as well as T1, unless measures are taken to destroy signal refocusing and prevent the development of steady state free precession.
To avoid setting up a state of SSFP when using rapidly repeated excitation RF pulses, it may be necessary to spoil the phase coherence between excitations, e.g. with varying phase shifts or timing of the exciting RF pulses or varying spoiler gradient pulses between the excitations.
Steady state free precession imaging methods are quite sensitive to the resonant frequency of the material. Fluctuating equilibrium MR (see also FIESTA and DRIVE)and linear combination SSFP actually use this sensitivity for fat suppression. Fat saturated SSFP (FS-SSFP) use a more complex fat suppression scheme than FEMR or LCSSFP, but has a 40% lower scan time.
A new family of steady state free precession sequences use a balanced gradient, a gradient waveform, which will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
This sequences include, e.g. Balanced Fast Field Echo - bFFE, Balanced Turbo Field Echo - bTFE, Fast Imaging with Steady Precession - TrueFISP and Balanced SARGE - BASG.

See also FIESTA.
spacer

• View the DATABASE results for 'Steady State Free Precession' (20).Open this link in a new window

 
Further Reading:
  News & More:
Comparison of New Methods for Magnetic Resonance Imaging of Articular Cartilage(.pdf)
2002
MRI Resources 
Crystallography - Spectroscopy pool - Quality Advice - Image Quality - Health - Contrast Enhanced MRI
 
Volume Selective Excitation
 
The selective excitation of spins in only a limited region of space. This can be particularly useful for spectroscopy as well as imaging. Spatial localization of the signal source may be achieved through spatially selective excitation and the resulting signal may be analyzed directly for the spectrum corresponding to the excited region. It is usually achieved with selective excitation.
Typically, a single dimension of localization can be achieved with one selective RF excitation pulse (and a magnetic field gradient along a desired direction), while a localized volume (3D) can be excited with a stimulated echo produced with three selective RF pulses whose selective magnetic field gradients are mutually orthogonal, having a common intersection in the desired region. Similar 'crossed plane' excitation can be used with selective 180° refocusing pulses and conventional spin echoes.
A degree of spatial localization of excitation can alternatively be achieved with depth pulses, e.g. when using surface coils for excitation as well as signal detection. An indirect application of selective excitation for volume-selected spectroscopy is to use appropriate combinations of signals acquired after selective inversion of different regions, in order to subtract away the signal from undesired regions.
spacer

• View the DATABASE results for 'Volume Selective Excitation' (3).Open this link in a new window

Searchterm 'Focus' was also found in the following services: 
spacer
News  (71)  Resources  (9)  Forum  (6)  
 
previous      46 - 48 (of 48)     
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]