Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Superparamagnetic Contrast Agents' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Superparamagnetic Contrast Agents' found in 2 terms [] and 10 definitions [], (+ 12 Boolean[] results
previous     6 - 10 (of 24)     next
Result Pages : [1]  [2 3]  [4 5]
Searchterm 'Superparamagnetic Contrast Agents' was also found in the following services: 
spacer
News  (1)  Forum  (1)  
 
FerucarbotranInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Short name: SHU 555 A, generic name: Ferucarbotran
A RES-directed MRI contrast agent (SPIO) made-up of a colloidal sol of iron oxide nanoparticles coated with carboxydextran (Resovist®, Cliavist™).
It is used for the detection and characterization of especially small focal liver lesions and offers the opportunity to make a reliable diagnosis at a very early stage of patients with suspected liver tumors.
Bayer Schering Pharma AG announced that it has received marketing approval for the liver-specific contrast agent Resovist® in Japan. See Contrast Agents and Superparamagnetic Contrast Agents.
spacer
MRI Resources 
IR - Health - Chemistry - DICOM - Spectroscopy pool - Resources
 
Gastrointestinal Paramagnetic Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Paramagnetic substances, for example Gd-DTPA solutions, are used as MRI oral contrast agents in gastrointestinal imaging to depict the lumen of the digestive organs. Different Gd-DTPA solutions or zeolites containing gadolinium can be used e.g., for diagnosis of delayed gastric emptying, diagnosis of Crohn's disease etc.
Low concentrations of gastrointestinal paramagnetic contrast agents cause a reduction in T1 relaxation time; consequently, these agents act on T1 weighted images by increasing the signal intensity of the bowel lumen. High concentrations cause T2 shortening by decreasing the signal, similar to superparamagnetic iron oxide. Gd-DTPA chelates are unstable at the low pH in the stomach, therefore buffering is necessary for oral use.

See also Gadopentetate Gastrointestinal, Gadolinium Zeolite, Negative Oral Contrast Agents, Gastrointestinal Superparamagnetic Contrast Agents, and Ferric ammonium citrate.
 
Images, Movies, Sliders:
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Gastrointestinal Paramagnetic Contrast Agents' (5).Open this link in a new window

MRI Resources 
Most Wanted - Pathology - IR - Contrast Enhanced MRI - Education - Societies
 
Hepatobiliary Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
The characteristics of a hepatobiliary contrast agent are specific liver uptake and excretion via the biliary system. The paramagnetic substance (e.g. manganese, gadolinium) is taken up by normal hepatocytes. Diseased liver tissue did not include hepatocytes or their function is disturbed. Therefore, the signal of healthy liver tissue increases on T1 weighted sequences, but not in the liver lesions.
Another type of liver imaging contrast agent is superparamagnetic iron oxide. These particles accumulate in the reticuloendothelial system (RES) of the liver, and darken the healthy liver tissue in T2 weighted images. RES cells (including Kupffer cells) are existing in healthy liver tissue, in altered tissue with reduced RES activity or without RES cells the contrast agent concentration is also low or not existing, which improves the liver to lesion contrast.
Benefits of hepatobiliary contrast agents:
•
Liver lesions (e.g., tumor, metastases, haemangioma etc.) are better detectable and to characterize.
•
These contrast agents are useful to analyze and evaluate the liver function (in cases of diffuse liver diseases e.g., cirrhosis).
•
Imaging of the gallbladder and biliary system is improved.

Differences of a hepatobiliary contrast agent compared with a targeted contrast agent for Kupffer cells:
•
The higher number of hepatocytes than Kupffer cells improves the uptake effectiveness of the contrast agent.
•
Hepatobiliary contrast agents enable a better opacification of the biliary ducts and the gallbladder caused by the biliary excretion.
•
Hepatobiliary contrast media are fast excreted agents. RES targeted contrast agents remain longer in the body, a fact that can increase possible side effects.

See also Superparamagnetic Contrast Agents, Hepatobiliary Chelates, Liver Imaging, Endoremâ„¢, Primovistâ„¢, and Classifications, Characteristics, etc.

See also the related poll result: 'The development of contrast agents in MRI is'
spacer

• View the DATABASE results for 'Hepatobiliary Contrast Agents' (11).Open this link in a new window

 
Further Reading:
  Basics:
Contrast MRI Best at Finding Liver Trouble - But Timing Matters
Sunday, 6 March 2011   by www.searchmedica.com    
  News & More:
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans
Friday, 21 July 2017   by www.ema.europa.eu    
MAGNETIC RESONANCE IMAGING OF FOCAL LIVER LESIONS(.pdf)
2002
Searchterm 'Superparamagnetic Contrast Agents' was also found in the following services: 
spacer
News  (1)  Forum  (1)  
 
NanoparticleInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Nanoparticles may be utilize as a new class of uniform, biodegradable and non-toxic superparamagnetic contrast agents (Fe3O4). The preparation process of these particles is simple, does not involve any toxic material and the yield is close to 100%. The particles are usually of varying sizes from several to several hundred nanometer. They are irregular in shape and highly light-absorbing. They have no magnetic hysteresis at ambient temperatures, which is characteristic of superparamagnetic materials. Each magnetic nanoparticle is composed of a very thin organic nucleus (5-10%) and a thick shell of magnetite.
Different techniques were established for coating these magnetite nanoparticles with several functional and biocompatible polymers. Both the coating and the magnetite production processes are controllable, so that it is possible to prepare particles with a specific size of each particle component as well as particles coated with protein ligands for tissue specific imaging applications.
spacer

• View the DATABASE results for 'Nanoparticle' (8).Open this link in a new window


• View the NEWS results for 'Nanoparticle' (14).Open this link in a new window.
 
Further Reading:
  Basics:
'Gadonanotubes' greatly outperform existing MRI contrast agents
Thursday, 11 August 2005   by www.eurekalert.org    
Lipid Nanoparticles(.pdf)
2000
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
Non-metallic T2-MRI agents based on conjugated polymers
Monday, 11 April 2022   by www.nature.com    
How nanoparticles from the environment enter the brain
Tuesday, 31 December 2019   by phys.org    
Rare earth orthoferrite LnFeO3 nanoparticles for bioimaging
Tuesday, 4 September 2018   by phys.org    
3D 'bone maps' could spot early signs of osteoporosis
Monday, 27 February 2017   by www.gmanetwork.com    
Smarter MRI diagnosis with nano MRI lamp
Monday, 6 February 2017   by www.eurekalert.org    
MIT: Remote-control nanoparticles deliver drugs directly into tumors
Friday, 16 November 2007   by www.eurekalert.org    
MRI Resources 
Manufacturers - Education - Spine MRI - Diffusion Weighted Imaging - RIS -
 
Oral Contrast AgentsForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
A limitation of abdominal MRI can be the assessment of malignancies by difficulties to distinguish bowel from other organs or malignant masses. The use of oral contrast agents can reduce this problem. Properties of an ideal oral contrast agent are little or no absorption by the stomach or intestines, complete excretion, no motion or susceptibility artifacts, and uniform marking of the GI tract.
Gastrointestinal MRI contrast agents are divided in materials with bright appearance or dark appearance. The choice of a negative or a positive oral contrast agent depends on the specific problem or the pulse sequence.

See also Positive Oral Contrast Agents, Negative Oral Contrast Agents, Gastrointestinal Diamagnetic Contrast Agents, Gastrointestinal Paramagnetic Contrast Agents and Gastrointestinal Superparamagnetic Contrast Agents.

See also the related poll result: 'The development of contrast agents in MRI is'
spacer

• View the DATABASE results for 'Oral Contrast Agents' (17).Open this link in a new window

 
Further Reading:
  News & More:
Usefulness of MR Imaging for Diseases of the Small Intestine: Comparison with CT
2000   by www.ncbi.nlm.nih.gov    
Nottingham scientists exploit MRI technology to assist in the treatment of IBS
Thursday, 9 January 2014   by www.news-medical.net    
MRI Resources 
Pediatric and Fetal MRI - Claustrophobia - Patient Information - Sequences - Cardiovascular Imaging - Knee MRI
 
previous      6 - 10 (of 24)     next
Result Pages : [1]  [2 3]  [4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]