Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Homogeneity' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Homogeneity' found in 4 terms [] and 44 definitions []
previous     26 - 30 (of 48)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
Searchterm 'Homogeneity' was also found in the following services: 
spacer
News  (1)  Forum  (5)  
 
Normalization Filter
 
This function equalizes the signal intensity when surface coils are used. By using this filter, the signal intensity of the region close to the coil is reduced, and the signal intensity of the area remote to the coil is increased. Also called homogeneity correction.
spacer
Searchterm 'Homogeneity' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (1) Open this link in a new window
Partial Fourier Technique
 
The partial Fourier technique is a modification of the Fourier transformation imaging method used in MRI in which the symmetry of the raw data in k-space is used to reduce the data acquisition time by acquiring only a part of k-space data.
The symmetry in k-space is a basic property of Fourier transformation and is called Hermitian symmetry. Thus, for the case of a real valued function g, the data on one half of k-space can be used to generate the data on the other half.
Utilization of this symmetry to reduce the acquisition time depends on whether the MRI problem obeys the assumption made above, i.e. that the function being characterized is real.
The function imaged in MRI is the distribution of transverse magnetization Mxy, which is a vector quantity having a magnitude, and a direction in the transverse plane. A convenient mathematical notation is to use a complex number to denote a vector quantity such as the transverse magnetization, by assigning the x'-component of the magnetization to the real part of the number and the y'-component to the imaginary part. (Sometimes, this mathematical convenience is stretched somewhat, and the magnetization is described as having a real component and an imaginary component. Physically, the x' and y' components of Mxy are equally 'real' in the tangible sense.)
Thus, from the known symmetry properties for the Fourier transformation of a real valued function, if the transverse magnetization is entirely in the x'-component (i.e. the y'-component is zero), then an image can be formed from the data for only half of k-space (ignoring the effects of the imaging gradients, e.g. the readout- and phase encoding gradients).
The conditions under which Hermitian symmetry holds and the corrections that must be applied when the assumption is not strictly obeyed must be considered.
There are a variety of factors that can change the phase of the transverse magnetization:
Off resonance (e.g. chemical shift and magnetic field inhomogeneity cause local phase shifts in gradient echo pulse sequences. This is less of a problem in spin echo pulse sequences.
Flow and motion in the presence of gradients also cause phase shifts.
Effects of the radio frequency RF pulses can also cause phase shifts in the image, especially when different coils are used to transmit and receive.
Only, if one can assume that the phase shifts are slowly varying across the object (i.e. not completely independent in each pixel) significant benefits can still be obtained. To avoid problems due to slowly varying phase shifts in the object, more than one half of k-space must be covered. Thus, both sides of k-space are measured in a low spatial frequency range while at higher frequencies they are measured only on one side. The fully sampled low frequency portion is used to characterize (and correct for) the slowly varying phase shifts.
Several reconstruction algorithms are available to achieve this. The size of the fully sampled region is dependent on the spatial frequency content of the phase shifts. The partial Fourier method can be employed to reduce the number of phase encoding values used and therefore to reduce the scan time. This method is sometimes called half-NEX, 3/4-NEX imaging, etc. (NEX/NSA). The scan time reduction comes at the expense of signal to noise ratio (SNR).
Partial k-space coverage is also useable in the readout direction. To accomplish this, the dephasing gradient in the readout direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened.
This is often used in gradient echo imaging to reduce the echo time (TE). The benefit is at the expense in SNR, although this may be partly offset by the reduced echo time. Partial Fourier imaging should not be used when phase information is eligible, as in phase contrast angiography.

See also acronyms for 'partial Fourier techniques' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Fourier Technique' (6).Open this link in a new window

MRI Resources 
General - Calculation - MRCP - Libraries - Examinations - Mobile MRI Rental
 
Passive Shimming
 
Shimming by adjusting the position of suitable pieces of ferromagnetic metal within or around the main magnet of a MRI system. Typically, the iron is in the form of small plates which are held in removable trays. The magnetic field is plotted, the position and quality of the iron required is then calculated and the appropriate 'shims' put in place. Several repetitions of this process will normally be required in order to achieve the optimum arrangement.
Passive shimming does not replace adjustable shimming, but is installed during the commissioning of a unit to improve the homogeneity of the bare magnet.
spacer

• View the DATABASE results for 'Passive Shimming' (4).Open this link in a new window

Searchterm 'Homogeneity' was also found in the following services: 
spacer
News  (1)  Forum  (5)  
 
Periodically Rotated Overlapping Parallel Lines with Enhanced ReconstructionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PROPELLER) The PROPELLER MRI technique reduces the sensitivity to various sources of image artifacts (e.g., motion artifact, field inhomogeneity artifact, eddy current artifact). PROPELLER can be used with gradient echo and turbo spin echo sequences in a wide range of applications to improve the image quality, for example cardiac MRI, brain MRI, and pediatric examinations.
spacer
 
Further Reading:
  Basics:
Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction(PROPELLER) MRI; Application to Motion Correction
1999   by cds.ismrm.org    
MR Field Notes
   by www.gehealthcare.com    
Advances in Magnetic Resonance Neuroimaging
Friday, 27 February 2009   by www.ncbi.nlm.nih.gov    
  News & More:
Patient movement during MRI: Additional points to ponder
Tuesday, 5 January 2016   by www.healthimaging.com    
New MR sequence helps radiologists more accurately evaluate abnormalities of the uterus and ovaries
Thursday, 23 April 2009   by www.eurekalert.org    
Searchterm 'Homogeneity' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (1) Open this link in a new window
Permanent Magnet
 
A magnet whose magnetic field originates from permanently ferromagnetic materials (permanent magnets) to generate a magnetic field between the two poles of the magnet. There is no requirement for additional electrical power or cooling, and the iron-core structure of the magnet leads to a limited fringe field and no missile effect. Due to weight considerations, permanent magnets are usually limited to maximum field strengths of 0.4 T. The main disadvantages of a permanent magnet are the cost of the magnet itself and supporting structures and the varying changes in the magnetic field. Field homogeneity can be an on-going problem in permanent magnets.
spacer

• View the DATABASE results for 'Permanent Magnet' (15).Open this link in a new window


• View the NEWS results for 'Permanent Magnet' (2).Open this link in a new window.
 
Further Reading:
  Basics:
What types of magnets are there?
   by my.execpc.com    
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Russian Engineers Create a New MRI Scanner for Overweight People
Saturday, 30 November 2019   by www.prnewswire.com    
MRI Resources 
IR - Corporations - Veterinary MRI - RIS - Crystallography - Fluorescence
 
previous      26 - 30 (of 48)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 2 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]