Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Raw Data' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Raw Data' found in 1 term [] and 22 definitions []
previous     16 - 20 (of 23)     next
Result Pages : [1]  [2 3 4 5]
Searchterm 'Raw Data' was also found in the following services: 
spacer
Resources  (4)  Forum  (3)  
 
Nuclear Magnetic ResonanceMRI Resource Directory:
 - NMR -
 
(NMR) Nuclear Magnetic Resonance is a physical phenomenon of the magnetic property of nuclei, which have a positive nuclear spin quantum number.
Under the influence of an external static magnetic field this nuclei will precess about the direction of the magnetic field with an angular frequency (Larmor frequency). Through absorption and emission of RF energy (gradients, RF coils) at the resonance frequency (Larmor equation) and the processing of this raw data by the Fourier transformation - physical, chemical, electronic, and structural information about molecules can be obtained (NMR Magnetic Resonance Spectroscopy, Magnetic Resonance Imaging).
spacer

• View the NEWS results for 'Nuclear Magnetic Resonance' (1).Open this link in a new window.
 
Further Reading:
  Basics:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Nuclear magnetic resonance with no magnets
Wednesday, 18 May 2011   by www.physorg.com    
  News & More:
Neuromelanin-Sensitive MRI Identified as a Potential Biomarker for Psychosis
Sunday, 10 February 2019   by www.nimh.nih.gov    
A powder to enhance NMR signals
Thursday, 12 December 2013   by phys.org    
New Paradigm for Nanoscale Resolution MRI Experimentally Achieved
Friday, 27 September 2013   by www.sciencedaily.com    
Searchterm 'Raw Data' was also found in the following services: 
spacer
Radiology  (9) Open this link in a new windowUltrasound  (7) Open this link in a new window
Partial Fourier Technique
 
The partial Fourier technique is a modification of the Fourier transformation imaging method used in MRI in which the symmetry of the raw data in k-space is used to reduce the data acquisition time by acquiring only a part of k-space data.
The symmetry in k-space is a basic property of Fourier transformation and is called Hermitian symmetry. Thus, for the case of a real valued function g, the data on one half of k-space can be used to generate the data on the other half.
Utilization of this symmetry to reduce the acquisition time depends on whether the MRI problem obeys the assumption made above, i.e. that the function being characterized is real.
The function imaged in MRI is the distribution of transverse magnetization Mxy, which is a vector quantity having a magnitude, and a direction in the transverse plane. A convenient mathematical notation is to use a complex number to denote a vector quantity such as the transverse magnetization, by assigning the x'-component of the magnetization to the real part of the number and the y'-component to the imaginary part. (Sometimes, this mathematical convenience is stretched somewhat, and the magnetization is described as having a real component and an imaginary component. Physically, the x' and y' components of Mxy are equally 'real' in the tangible sense.)
Thus, from the known symmetry properties for the Fourier transformation of a real valued function, if the transverse magnetization is entirely in the x'-component (i.e. the y'-component is zero), then an image can be formed from the data for only half of k-space (ignoring the effects of the imaging gradients, e.g. the readout- and phase encoding gradients).
The conditions under which Hermitian symmetry holds and the corrections that must be applied when the assumption is not strictly obeyed must be considered.
There are a variety of factors that can change the phase of the transverse magnetization:
Off resonance (e.g. chemical shift and magnetic field inhomogeneity cause local phase shifts in gradient echo pulse sequences. This is less of a problem in spin echo pulse sequences.
Flow and motion in the presence of gradients also cause phase shifts.
Effects of the radio frequency RF pulses can also cause phase shifts in the image, especially when different coils are used to transmit and receive.
Only, if one can assume that the phase shifts are slowly varying across the object (i.e. not completely independent in each pixel) significant benefits can still be obtained. To avoid problems due to slowly varying phase shifts in the object, more than one half of k-space must be covered. Thus, both sides of k-space are measured in a low spatial frequency range while at higher frequencies they are measured only on one side. The fully sampled low frequency portion is used to characterize (and correct for) the slowly varying phase shifts.
Several reconstruction algorithms are available to achieve this. The size of the fully sampled region is dependent on the spatial frequency content of the phase shifts. The partial Fourier method can be employed to reduce the number of phase encoding values used and therefore to reduce the scan time. This method is sometimes called half-NEX, 3/4-NEX imaging, etc. (NEX/NSA). The scan time reduction comes at the expense of signal to noise ratio (SNR).
Partial k-space coverage is also useable in the readout direction. To accomplish this, the dephasing gradient in the readout direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened.
This is often used in gradient echo imaging to reduce the echo time (TE). The benefit is at the expense in SNR, although this may be partly offset by the reduced echo time. Partial Fourier imaging should not be used when phase information is eligible, as in phase contrast angiography.

See also acronyms for 'partial Fourier techniques' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Fourier Technique' (6).Open this link in a new window

MRI Resources 
MRI Accidents - Portals - Artifacts - Fluorescence - MRI Technician and Technologist Career - Health
 
Phase Conjugate Symmetry
 
The phase conjugate symmetry benefits from the symmetry (see also Hermitian symmetry) of the raw data in k-space and is used to reduce the data acquisition time by acquiring only a part of k-space data.

See also Partial Fourier Technique, Partial Averaging and acronyms for 'phase conjugate symmetry' from different manufacturers.
spacer

• View the DATABASE results for 'Phase Conjugate Symmetry' (3).Open this link in a new window

Searchterm 'Raw Data' was also found in the following services: 
spacer
Resources  (4)  Forum  (3)  
 
Phase Contrast SequenceMRI Resource Directory:
 - Sequences -
 
(PC) Phase contrast sequences are the basis of MRA techniques utilizing the change in the phase shifts of the flowing protons in the region of interest to create an image. Spins that are moving along the direction of a magnetic field gradient receive a phase shift proportional to their velocity.
In a phase contrast sequence two data sets with a different amount of flow sensitivity are acquired. This is usually accomplished by applying gradient pairs, which sequentially dephase and then rephase spins during the sequence. Both 2D and 3D acquisition techniques can be applied with phase contrast MRA.
The first data set is acquired with a flow compensated sequence, i. e. without flow sensitivity. The second data set is acquired with a flow sensitive sequence. The amount of flow sensitivity is controlled by the strength of the bipolar gradient pulse pair, which is incorporated into the sequence. Stationary tissue undergoes no effective phase change after the application of the two gradients. Caused by the different spatial localization of flowing blood to stationary tissue, it experiences a different size of the second bipolar gradient compared to the first. The result is a phase shift.
The raw data from the two data sets are subtracted. By comparing the phase of signals from each location in the two sequences the exact amount of motion induced phase change can be determined to have a map where pixel brightness is proportional to spatial velocity.
Phase contrast images represent the signal intensity of the velocity of spins at each point within the field of view. Regions that are stationary remain black while moving regions are represented as grey to white.
The phase shift is proportional to the spin's velocity, and this allows the quantitative assessment of flow velocities. The difference MRI signal has a maximum value for opposite directions. This velocity is typically referred to as venc, and depends on the pulse amplitude and distance between the gradient pulse pair. For velocities larger than venc the difference signal is decreased constantly until it gets zero. Therefore, in a phase contrast angiography it is important to correctly set the venc of the sequence to the maximum flow velocity which is expected during the measurement. High venc factors of the PC angiogram (more than 40 cm/sec) will selectively image the arteries (PCA - arteriography), whereas a venc factor of 20 cm/sec will perform the veins and sinuses (PCV or MRV - venography).

See also Flow Quantification, Contrast Enhanced MR Venography, Time of Flight Angiography, Time Resolved Imaging of Contrast Kinetics.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Phase Contrast Sequence' (5).Open this link in a new window

 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
Searchterm 'Raw Data' was also found in the following services: 
spacer
Radiology  (9) Open this link in a new windowUltrasound  (7) Open this link in a new window
Segmented HASTE
 
A variation of the (Half Fourier Acquisition Single Shot Turbo Spin Echo) HASTE sequence, whereat half of the image information is acquired after the first excitation pulse, and the half after the second excitation pulse. The acquired data are then interleaved into the raw data matrix. A long time to repetition (TR) is selected to allow the spin system to recover between excitation pulses and the dead time is used for additional slices. The length of the echo train is cut in half. Also more than 2 segments are possible.
spacer

• View the DATABASE results for 'Segmented HASTE' (2).Open this link in a new window

MRI Resources 
Spine MRI - Portals - Chemistry - Contrast Agents - Pregnancy - Intraoperative MRI
 
previous      16 - 20 (of 23)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]