Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Flow Encoding' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Flow Encoding' found in 1 term [] and 2 definitions [], (+ 15 Boolean[] results
previous     16 - 18 (of 18)     
Result Pages : [1]  [2 3 4]
MRI Resources 
Nerve Stimulator - Shoulder MRI - Sequences - Cochlear Implant - Knee MRI - Software
 
Flow ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
DESCRIPTION
Vascular ghosts (ghosting artifact), anomalous intensities in images
REASON
Movement of body fluids
HELP
Flow compensation, presaturation, triggering
Flow effects in MRI produce a range of artifacts, e.g. intravascular signal void by time of flight effects; turbulent dephasing and first echo dephasing, caused by flowing blood.
Through movement of the hydrogen nuclei (e.g. blood flow), there is a location change between the time these nuclei experience a radio frequency pulse and the time the emitted signal is received (because the repetition time is asynchronous with the pulsatile flow).
The blood flow occasionally produces intravascular high signal intensities due to flow related enhancement, even echo rephasing and diastolic pseudogating. The pulsatile laminar flow within vessels often produces a complex multilayered band that usually propagates outside the head in the phase encoded direction. Blood flow artifacts should be considered as a special subgroup of motion artifacts.
mri safety guidance
Image Guidance
Artifacts can be reduced by reduction of phase shifts with flow compensation (gradient moment nulling), suppression of the blood signal with saturation pulses parallel to the slices, synchronization of the imaging sequence with the heart cycle (cardiac triggering) or can be flipped 90° by swapping the phase//frequency encoding directions.

See also Flow Related Enhancement and Flow Effects.
 
Images, Movies, Sliders:
 Knee MRI Sagittal T1 003  Open this link in a new window
 
spacer
 
Further Reading:
  News & More:
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Advanced Visualization Techniques Could Change the Paradigm for Diagnosis and Treatment of Heart Disease
Thursday, 31 May 2012   by www.sciencedaily.com    
MRI Resources 
Open Directory Project - Resources - MRI Technician and Technologist Schools - Pathology - Education pool - Image Quality
 
Respiratory Compensation
 
Respiratory compensation reduces motion artifacts due to breathing. The approach is to reassign the echoes that are sensitive to respiratory motion in the central region of k-space. The outer lines of phase encoding normally contain the echoes where the motion from expiration is the greatest. The central portion of k-space will have encoded the echoes where inspiration and expiration are minimal. By a bellows device fixed to the abdomen, monitoring of the diaphragm excursion is possible. Respiratory compensation does not increase scan time with most systems.
An advantage of very fast sequences is the possibility of breath holding during the acquisition to eliminate motion artifacts. Breath hold is commonly used on most abdominal studies where images are acquired using gradient echo-based sequences during a brief inspiratory period (20-30 seconds). To enhance the breath holding endurance of the patient, connecting the patient to oxygen at a 1-liter flow rate via a nasal cannula has been shown to be helpful.
Also called PEAR, Respiratory Trigger, Respiratory Gating, PRIZE, FREEZE, Phase Reordering.

See also Phase Encoding Artifact Reduction, Respiratory Ordered Phase Encoding.
spacer

• View the DATABASE results for 'Respiratory Compensation' (4).Open this link in a new window

 
Further Reading:
  News & More:
Controlling patient's breathing makes cardiac MRI more accurate
Friday, 13 May 2016   by www.upi.com    
MRI Resources 
Safety Products - Claustrophobia - Equipment - Distributors - Cochlear Implant - Patient Information
 
Partial Fourier Technique
 
The partial Fourier technique is a modification of the Fourier transformation imaging method used in MRI in which the symmetry of the raw data in k-space is used to reduce the data acquisition time by acquiring only a part of k-space data.
The symmetry in k-space is a basic property of Fourier transformation and is called Hermitian symmetry. Thus, for the case of a real valued function g, the data on one half of k-space can be used to generate the data on the other half.
Utilization of this symmetry to reduce the acquisition time depends on whether the MRI problem obeys the assumption made above, i.e. that the function being characterized is real.
The function imaged in MRI is the distribution of transverse magnetization Mxy, which is a vector quantity having a magnitude, and a direction in the transverse plane. A convenient mathematical notation is to use a complex number to denote a vector quantity such as the transverse magnetization, by assigning the x'-component of the magnetization to the real part of the number and the y'-component to the imaginary part. (Sometimes, this mathematical convenience is stretched somewhat, and the magnetization is described as having a real component and an imaginary component. Physically, the x' and y' components of Mxy are equally 'real' in the tangible sense.)
Thus, from the known symmetry properties for the Fourier transformation of a real valued function, if the transverse magnetization is entirely in the x'-component (i.e. the y'-component is zero), then an image can be formed from the data for only half of k-space (ignoring the effects of the imaging gradients, e.g. the readout- and phase encoding gradients).
The conditions under which Hermitian symmetry holds and the corrections that must be applied when the assumption is not strictly obeyed must be considered.
There are a variety of factors that can change the phase of the transverse magnetization:
Off resonance (e.g. chemical shift and magnetic field inhomogeneity cause local phase shifts in gradient echo pulse sequences. This is less of a problem in spin echo pulse sequences.
Flow and motion in the presence of gradients also cause phase shifts.
Effects of the radio frequency RF pulses can also cause phase shifts in the image, especially when different coils are used to transmit and receive.
Only, if one can assume that the phase shifts are slowly varying across the object (i.e. not completely independent in each pixel) significant benefits can still be obtained. To avoid problems due to slowly varying phase shifts in the object, more than one half of k-space must be covered. Thus, both sides of k-space are measured in a low spatial frequency range while at higher frequencies they are measured only on one side. The fully sampled low frequency portion is used to characterize (and correct for) the slowly varying phase shifts.
Several reconstruction algorithms are available to achieve this. The size of the fully sampled region is dependent on the spatial frequency content of the phase shifts. The partial Fourier method can be employed to reduce the number of phase encoding values used and therefore to reduce the scan time. This method is sometimes called half-NEX, 3/4-NEX imaging, etc. (NEX/NSA). The scan time reduction comes at the expense of signal to noise ratio (SNR).
Partial k-space coverage is also useable in the readout direction. To accomplish this, the dephasing gradient in the readout direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened.
This is often used in gradient echo imaging to reduce the echo time (TE). The benefit is at the expense in SNR, although this may be partly offset by the reduced echo time. Partial Fourier imaging should not be used when phase information is eligible, as in phase contrast angiography.

See also acronyms for 'partial Fourier techniques' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Fourier Technique' (6).Open this link in a new window

MRI Resources 
General - Cardiovascular Imaging - Liver Imaging - Colonography - Nerve Stimulator - Fluorescence
 
previous      16 - 18 (of 18)     
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 4 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]