Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Slice Encoding' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Slice Encoding' found in 1 term [] and 1 definition [], (+ 18 Boolean[] results
previous     16 - 20 (of 20)     
Result Pages : [1]  [2 3 4]
MRI Resources 
PACS - MRI Training Courses - Spectroscopy - Diffusion Weighted Imaging - Mobile MRI Rental - Safety pool
 
FID Signal ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
FID (with spin echo) signal
DESCRIPTION
Line across the center of the image
REASON
Combination of problems
HELP
Call the service
A combination of B1 inhomogeneity, poor slice profile, and insufficient spoiler gradients between the refocusing pulse and the readout interval of a spin echo sequence results in a FID signal being detected along with the echo.
Since the FID is not phase encoded (normally the phase encoding occurs before the refocusing pulse), it is not dispersed along the phase encoding axis, but appears as a line across the center of the image.
mri safety guidance
Image Guidance
If the problem persists, it must be addressed by a service representative.
spacer
 
Further Reading:
  News & More:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
MRI Resources 
Distributors - Case Studies - Most Wanted - MRI Reimbursement - Service and Support - Chemistry
 
Flow ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
DESCRIPTION
Vascular ghosts (ghosting artifact), anomalous intensities in images
REASON
Movement of body fluids
HELP
Flow compensation, presaturation, triggering
Flow effects in MRI produce a range of artifacts, e.g. intravascular signal void by time of flight effects; turbulent dephasing and first echo dephasing, caused by flowing blood.
Through movement of the hydrogen nuclei (e.g. blood flow), there is a location change between the time these nuclei experience a radio frequency pulse and the time the emitted signal is received (because the repetition time is asynchronous with the pulsatile flow).
The blood flow occasionally produces intravascular high signal intensities due to flow related enhancement, even echo rephasing and diastolic pseudogating. The pulsatile laminar flow within vessels often produces a complex multilayered band that usually propagates outside the head in the phase encoded direction. Blood flow artifacts should be considered as a special subgroup of motion artifacts.
mri safety guidance
Image Guidance
Artifacts can be reduced by reduction of phase shifts with flow compensation (gradient moment nulling), suppression of the blood signal with saturation pulses parallel to the slices, synchronization of the imaging sequence with the heart cycle (cardiac triggering) or can be flipped 90° by swapping the phase//frequency encoding directions.

See also Flow Related Enhancement and Flow Effects.
 
Images, Movies, Sliders:
 Knee MRI Sagittal T1 003  Open this link in a new window
 
spacer

• View the DATABASE results for 'Flow Artifact' (6).Open this link in a new window

 
Further Reading:
  News & More:
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Advanced Visualization Techniques Could Change the Paradigm for Diagnosis and Treatment of Heart Disease
Thursday, 31 May 2012   by www.sciencedaily.com    
MRI Resources 
Cochlear Implant - Nerve Stimulator - NMR - Fluorescence - MRI Technician and Technologist Schools - MR Guided Interventions
 
3 Dimensional Acquisition
 
Scanning of a volume instead of scanning single slices. The phase encoding gradient is used for two directions.
spacer
 
Further Reading:
  Basics:
3-D VOLUMETRIC IMAGING FOR STEREOTACTIC LESIONAL AND DEEP BRAIN STIMULATION SURGERY
3D Software to Model the Whole Human Body
Thursday, 12 November 2009   by news.softpedia.com    
  News & More:
A 100-hour MRI scan captured the most detailed look yet at a whole human brain
Monday, 8 July 2019   by www.sciencenews.or    
First 3D MRI scans of unborn babies
Monday, 30 November 2009   by news.bbc.co.uk    
Scans show how HIV attacks brain
Tuesday, 11 October 2005   by news.bbc.co.uk    
Cutting Edge Imaging of THE Spine
February 2007   by www.pubmedcentral.nih.gov    
MRI Resources 
Guidance - Veterinary MRI - Examinations - Liver Imaging - Portals - Hospitals
 
Gradient Recalled Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The gradient recalled echo MRI sequence generates gradient echoes as a consequence of echo refocusing. The initial slice selective RF pulse applied to the tissue is less than 90° (typically rotation angles are between 10° and 90°). Immediately after this RF pulse, the spins begin to dephase.
Instead of a refocusing 180° RF pulse, reversing the gradient polarity produces a gradient echo. A negative phase encoding gradient and a dephasing frequency encoding gradient are used simultaneous. The switch on of the frequency encoding gradient produces an echo caused by refocusing of the dephasing, which is caused by the dephasing gradient.
TR and flip angle together control the T1, and TE control T2* weighting.
spacer

• View the DATABASE results for 'Gradient Recalled Echo Sequence' (7).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
MRI Resources 
Non-English - Cochlear Implant - Chemistry - Safety pool - Pregnancy - Anatomy
 
Incoherent Gradient Echo (Gradient Spoiled)InfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The incoherent gradient echo (gradient spoiled) type of sequence uses a continuous shifting of the RF pulse to spoil the remaining transverse magnetization. The transverse magnetization is destroyed by a magnetic field gradient. This results in a T1 weighted image. Spoiling can be accomplished by RF or a gradient.
Gradient spoiling occurs after each echo by using strong gradients in the slice-select direction after the frequency encoding and before the next RF pulse. Because spins in different locations in the magnet thereby experience a variety of magnetic field strengths, they will precess at differing frequencies; as a consequence they will quickly become dephased. Magnetic field gradients are not very efficient at spoiling the transverse steady state. To be effective, the spins must be forced to precess far enough to become phased randomly with respect to the RF excitation pulse. In clinical MRI machines, the field gradients are set up in such a way that they increase and decrease relative to the center of the magnet; the magnetic field at the magnet 'isocenter' does not change.
The T1 weighting increases with the flip angle and the T2* weighting increases with echo time (TE). Typical repetition time (TR) are 30-500 ms and TE less than 15 ms.

See also Ernst Angle.
spacer
MRI Resources 
Case Studies - Blood Flow Imaging - MRCP - Diffusion Weighted Imaging - Most Wanted - Corporations
 
previous      16 - 20 (of 20)     
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 2 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]