Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Intera' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Intera' found in 9 terms [] and 36 definitions []
previous     26 - 30 (of 45)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9]
Searchterm 'Intera' was also found in the following services: 
spacer
News  (9)  Resources  (22)  Forum  (10)  
 
Gastrointestinal Superparamagnetic Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Gastrointestinal (GI) superparamagnetic contrast agents are used in MRI to improve the visualization of e.g., the intestinal tract, the pancreas (see MRCP), etc. Disadvantages are susceptibility artifacts e.g., dependent on delayed imaging or large volumes resulting in artifacts in the colon and distal small bowel loops related to higher concentration of the particles and absorption of the fluid.
Different types of MRI gastrointestinal superparamagnetic contrast agents:
Magnetite albumin microsphere

Usually gastrointestinal superparamagnetic contrast media consist of small iron oxide crystals (ferrites), which produce a signal reduction in the stomach and bowel after oral administration. The T2 shortening caused by these particles is produced from the local magnetic field inhomogeneities associated with the large magnetic moments of superparamagnetic particles. Ferrites are iron oxides of the general formula Fe203.MO, where M is a divalent metal ion and may be mixed with Fe3O4 in different preparations. Ferrites can produce symptoms of nausea after oral administration, as well as flatulence and a transient rise in serum iron. Embedding in inert substances reduce side effects by decreasing the absorption and interaction with body tissues. Combining these contrast materials with polymers such as polyethylene glycol or cellulose, or with sugars such as dextrose, results in improved T1 and/or T2 relaxivity compared with that of the contrast agent alone.

See also Negative Oral Contrast Agents, Gastrointestinal Diamagnetic Contrast Agents, Relaxivity, and Combination Oral Contrast Agents.
spacer
 
Further Reading:
  Basics:
Negative GI Contrast Agents
   by www.mritutor.org    
MRI Resources 
Safety Products - Functional MRI - MRI Reimbursement - Knee MRI - Resources - Veterinary MRI
 
Isotropic Motion
 
Motion, which is uniform in all directions. This is generally used in reference to molecular diffusion or rotation, which gives rise to relaxation of the spin system through the dipole dipole interaction.
spacer
MRI Resources 
Patient Information - Blood Flow Imaging - Open Directory Project - Colonography - Breast Implant - Knee MRI
 
MagnetForum -
related threads
 
A magnet is by definition an object with magnetic properties (magnetism) that attracts iron and produces a magnetic field. It can be a permanent magnet or an electromagnet.
Permanent magnets do not rely upon outside influences to generate their field. In permanent magnets are the atoms and molecules ordered in long range. The specific electron configuration and the distance of the atoms is what lead to this long range ordering. The electrons exist in a lower energy state if they all have the same orientation. Magnetic domains can be likened to microscopic neighborhoods in which there is a strong reinforcing interaction between particles, resulting in a high degree of order. The greater the degree of ordering within and between domains, the greater the resulting field will be. Long range ordering is one of the hallmarks of a ferromagnetic material.
A current carrying conductor for example a piece of wire, produces a magnetic field that encircles the wire. An electromagnet, in its simplest form, is a wire that has been coiled into one or more loops. This coil is known as a solenoid. The more loops of wire and the greater the current, the stronger the field will be.
Superconducting magnets are a special type of electromagnets, often used in MRI machines with high field strength.
spacer

• View the DATABASE results for 'Magnet' (669).Open this link in a new window


• View the NEWS results for 'Magnet' (315).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Philips Signs Research Agreement to Explore New Magnet Technologies
Monday, 5 December 2022   by www.itnonline.com    
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
Magnetic seeds used to heat and kill cancer
Tuesday, 1 February 2022   by www.sciencedaily.com    
Harvard Scientists Create Nanoscale MRI
Monday, 28 April 2014   by www.meddeviceonline.com    
How Academic Research Solved the Puzzle of MRI and CAT Scanning
Monday, 21 April 2014   by www.engineering.com    
Searchterm 'Intera' was also found in the following services: 
spacer
News  (9)  Resources  (22)  Forum  (10)  
 
Magnetic MomentForum -
related threads
 
A measure of the net magnetic properties of an object or particle. A nucleus with an intrinsic spin will have an associated magnetic dipole moment, so that it will interact with a magnetic field (as if it were a tiny bar magnet).
spacer

• View the DATABASE results for 'Magnetic Moment' (21).Open this link in a new window

MRI Resources 
Used and Refurbished MRI Equipment - Shoulder MRI - MRCP - Cochlear Implant - Image Quality - Cardiovascular Imaging
 
Magnetic Resonance Imaging MRI
 
(MRI) Magnetic resonance imaging is a noninvasive medical imaging technique that uses the interaction between radio frequency pulses, a strong magnetic field and body tissue to obtain images of slices/planes from inside the body. These magnets generate fields from approx. 2000 times up to 30000 times stronger than that of the Earth. The use of nuclear magnetic resonance principles produces extremely detailed pictures of the body tissue without the need for x-ray exposure and gives diagnostic information of various organs.
Measured are mobile hydrogen nuclei (protons are the hydrogen atoms of water, the 'H' in H20), the majority of elements in the body. Only a small part of them contribute to the measured signal, caused by their different alignment in the magnetic field. Protons are capable of absorbing energy if exposed to short radio wave pulses (electromagnetic energy) at their resonance frequency. After the absorption of this energy, the nuclei release this energy so that they return to their initial state of equilibrium.
This transmission of energy by the nuclei as they return to their initial state is what is observed as the MRI signal. The subtle differing characteristic of that signal from different tissues combined with complex mathematical formulas analyzed on modern computers is what enables MRI imaging to distinguish between various organs. Any imaging plane, or slice, can be projected, and then stored or printed.
The measured signal intensity depends jointly on the spin density and the relaxation times (T1 time and T2 time), with their relative importance depending on the particular imaging technique and choice of interpulse times. Any motion such as blood flow, respiration, etc. also affects the image brightness.
Magnetic resonance imaging is particularly sensitive in assessing anatomical structures, organs and soft tissues for the detection and diagnosis of a broad range of pathological conditions. MRI pictures can provide contrast between benign and pathological tissues and may be used to stage cancers as well as to evaluate the response to treatment of malignancies. The need for biopsy or exploratory surgery can be eliminated in some cases, and can result in earlier diagnosis of many diseases.

See also MRI History and Functional Magnetic Resonance Imaging (fMRI).
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Lumbar Spine  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Breast MRI Images T2 And T1 Pre - Post Contrast  Open this link in a new window
 Anatomic Imaging of the Shoulder  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Magnetic Resonance Imaging MRI' (9).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Imaging MRI' (222).Open this link in a new window.
 
Further Reading:
  Basics:
Bringing More Value to Imaging Departments With MRI
Friday, 4 October 2019   by www.itnonline.com    
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
On the Horizon - Next Generation MRI
Wednesday, 23 October 2013   by thefutureofthings.com    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
  News & More:
High-resolution MRI enables direct imaging of neuronal activity - DIANA – direct imaging of neuronal activity
Friday, 18 November 2022   by physicsworld.com    
New MRI technique can 'see' molecular changes in the brain
Thursday, 5 September 2019   by medicalxpress.com    
How new MRI technology is transforming the patient experience
Tuesday, 14 May 2019   by newsroom.gehealthcare.com    
Metamaterials boost sensitivity of MRI machines
Thursday, 14 January 2016   by www.eurekalert.org    
MRI technique allows study of wrist in motion
Monday, 6 January 2014   by www.healthimaging.com    
New imaging technology promising for several types of cancer
Thursday, 29 August 2013   by medicalxpress.com    
MRI method for measuring MS progression validated
Thursday, 19 December 2013   by www.eurekalert.org    
MRI Resources 
Software - Education - Research Labs - Guidance - Breast Implant - Coils
 
previous      26 - 30 (of 45)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 27 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]