Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Ramp' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Ramp' found in 4 terms [] and 4 definitions []
previous     6 - 8 (of 8)     
Result Pages : [1]  [2]
Searchterm 'Ramp' was also found in the following services: 
spacer
News  (2)  Resources  (1)  Forum  (2)  
 
Balanced SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with Steady Precession (TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG).
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Infarct 4 Chamber Cine  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
 
Further Reading:
  News & More:
Generic Eddy Current Compensation for Rapid Magnetic Resonance Imaging(.pdf)
   by www.switt.ch    
Magnetic resonance imaging guided musculoskeletal interventions at 0.23T: Chapter 4. Materials and methods
2002
Searchterm 'Ramp' was also found in the following service: 
spacer
Radiology  (1) Open this link in a new window
Boil off Rate
 
Rate of cryogen (liquid helium) evaporation in superconducting magnets, usually measured in liters of liquid per hour. The boil off rate of cryogen increases during ramping of the magnet and with eddy currents induced in the cryoshields by pulsed field gradients. In calculating cryogen consumption additional transfer and filling losses have to be considered.

See also Cryoshielding and Helium.
spacer

• View the DATABASE results for 'Boil off Rate' (4).Open this link in a new window

 
Further Reading:
  Basics:
Cryogenic Liquids and their Hazards
   by www.ccohs.ca    
Zero Boil Off Cryostats
Friday, 23 September 2011   by www.cryogenicsociety.or    
  News & More:
A hot time for cold superconductors
Tuesday, 9 December 2003   by www.brightsurf.com    
MRI Resources 
Libraries - Software - Most Wanted - Universities - Movies - Nerve Stimulator
 
Field Even Echo Rephasing
 
The FEER method was the first clinically useful flow quantification method using phase effects, from which all spin phase related flow quantification techniques currently in use are derived.
In this sequence a gradient echo is measured after a gradient with flow compensation. The measured signal phase should be zero for all pixels. A deviation from gradient symmetry by shifting the gradient ramp slightly away from the symmetry condition will impart a defined phase shift to the magnetization vectors associated with spins from pixels with flow.
Slight stable variations in the magnetic field across the imaging volume will prevent the phase angle from being uniformly zero throughout the volume in the flow-compensated image. The first image (acquired without gradient shift) serves as reference, defining the values of all pixel phase angles in the flow (motion) compensated sequence. Ensuing images with gradient phase shifts imparted in each of the 3 spatial axes will then permit measurement of the 3 components of the velocity vector v = (vx, vy, vz) by calculating the respective phases px, py and pz by simply subtracting the pixel phases measured in the compensated image from the 3 images with a well defined velocity sensitization.
The determination of all 3 components of the velocity vector requires the measurement of 4 images.
The phase quantification requires an imaging time four times longer than the simple measurement of a phase image and associated magnitude image. If only one arbitrary flow direction is of interest, it suffices to acquire the reference image plus one image velocity sensitized in the arbitrary direction of interest.

See also Flow Quantification.
spacer
Searchterm 'Ramp' was also found in the following services: 
spacer
News  (2)  Resources  (1)  Forum  (2)  
 
previous      6 - 8 (of 8)     
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]