Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Gyromagnetic Ratio' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gyromagnetic Ratio' found in 1 term [] and 3 definitions []
1 - 4 (of 4)     
Result Pages : [1]
MRI Resources 
Colonography - Shielding - Mobile MRI Rental - Mass Spectrometry - Open Directory Project - Implant and Prosthesis
 
Gyromagnetic Ratio
 
A constant for any given nucleus that relates the nuclear MR frequency and the strength of the external magnetic field.
Definition: The ratio of the magnetic moment (field strength = T) to the angular momentum (frequency = ν) of a particle.
The gyromagnetic effect happens if a magnetic substance is subjected to a magnetic field. Upon a change in direction of the magnetic field, the magnetization of the substance must change. In order for this to happen, the atoms must change their angular momentum. Since there are no external torques acting on the system, the total angular momentum must remain constant. This mass rotation may be measured. The gyromagnetic ratio is different for each nucleus of different atoms. The value of the gyromagnetic ratio for hydrogen (1H) is 4,258 (Hz/G) (42.58 MHz/T).
spacer
 
• Share the entry 'Gyromagnetic Ratio':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Magnetization
    • Precess
    • Echo
    • Spin
    • Relaxation Time
 
Further Reading:
  Basics:
Electron and proton gyromagnetic ratios
   by www.phys.au.dk    
MRI Resources 
Pediatric and Fetal MRI - Research Labs - Cochlear Implant - Implant and Prosthesis pool - General - Claustrophobia
 
Larmor Equation
 
The Larmor equation is important because it is the frequency at which the nucleus will absorb energy. The absorption of that energy will cause the proton to alter its alignment and ranges from 1-100 MHz in MRI. The equation states that the frequency of precession of the nuclear magnetic moment is directly proportional to the product of the magnetic field strength (B0) and the gyromagnetic ratio (g). This is stated mathematically as w = g B0.
spacer

• View the DATABASE results for 'Larmor Equation' (6).Open this link in a new window

 
Further Reading:
  News & More:
Electron and proton gyromagnetic ratios
   by www.phys.au.dk    
MRI Resources 
Homepages - Research Labs - Safety pool - Pregnancy - MRI Training Courses - Contrast Enhanced MRI
 
Larmor Frequency
 
The Larmor precession frequency is the rate of precession of a spin packet under the influence of a magnetic field. The frequency of an RF signal, which will cause a change in the nucleus spin energy level, is given by the Larmor equation. The frequency is determined by the gyro magnetic ratio of atoms and the strength of the magnetic field. The gyromagnetic ratio is different for each nucleus of different atoms.
The stronger the magnetic field, the higher the precessional frequency. If an RF pulse at the Larmor frequency is applied to the nucleus of an atom, the protons will alter their alignment from the direction of the main magnetic field to the direction opposite the main magnetic field. As the proton tries to realign with the main magnetic field, it will emit energy at the Larmor frequency. By varying the magnetic field across the body with a magnetic field gradient, the corresponding variation of the Larmor frequency can be used to encode the position. For protons (hydrogen nuclei), the Larmor frequency is 42.58 MHz/Tesla.

See also Larmor Equation.
spacer

• View the DATABASE results for 'Larmor Frequency' (27).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
  News & More:
Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents
Thursday, 24 December 2015   by www.ncbi.nlm.nih.gov    
MRI Resources 
Jobs pool - Stimulator pool - Anatomy - Universities - Knee MRI - Spectroscopy pool
 
Velocity Encoding
 
(VENC) A specialized technique used for encoding flow-velocities.
The velocity encoding value is given by:
VENC = pi / gamma DELTA M1.
Gamma is the gyromagnetic ratio, and DELTA M1 is the gradient moment and is proportional to the area of the flow encoding gradient waveform.

See also Phase Contrast Sequence, Phase Contrast Angiography, and Bipolar Gradient Pulse.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Velocity Encoding' (2).Open this link in a new window

 
Further Reading:
  Basics:
Non-invasively Measuring Blood Flow Using Magnetic Resonance Imaging - NOVA™ Now Available In Europe
Wednesday, 1 October 2008   by www.medicalnewstoday.com    
Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device
Thursday, 31 December 2009   by 7thspace.com    
MRI Resources 
Open Directory Project - Spectroscopy pool - Education pool - Spectroscopy - MRI Centers - Raman Spectroscopy
 
     1 - 4 (of 4)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 26 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]