Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Coherence' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Coherence' found in 3 terms [] and 16 definitions []
previous     6 - 10 (of 19)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Coherence' was also found in the following services: 
spacer
Forum  (6)  
 
Fast Low Angle ShotInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(FLASH) A fast sequence producing signals called gradient echo with low flip angles. FLASH sequences are modifications, which incorporate or remove the effects of transverse coherence respectively.
FLASH uses a semi-random spoiler gradient after each echo to spoil the steady state (to destroy any remaining transverse magnetization) by causing a spatially dependent phase shift. The transverse steady state is spoiled but the longitudinal steady state depends on the T1 values and the flip angle. Extremely short TR times are possible, as a result the sequence provides a mechanism for gaining extremely high T1 contrast by imaging with TR times as brief as 20 to 30 msec while retaining reasonable signal levels. It is important to keep the TE as short as possible to suppress susceptibility artifacts.
The T1 contrast depends on the TR as well as on flip angle, with short TE.
Small flip angles and short TR results in proton density, and long TR in T2* weighting.
With large flip angles and short TR result T1 weighted images.

TR and flip angle adjustment:

TR 3000 ms, Flip Angle 90°
TR 1500 ms, Flip Angle 45°
TR 700 ms, Flip Angle 25°
TR 125 ms, Flip Angle 10°

The apparent ability to trade TR against flip angle for purposes of contrast and the variation in SNR as the scan time (TR) is reduced.

See also Gradient Echo Sequence.
 
Images, Movies, Sliders:
 Fetus (Brain) and Dermoid in Mother  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer
 
• Related Searches:
    • Turbo Fast Low Angle Shot
    • Abdominal Imaging
    • Ultrafast Gradient Echo Sequence
    • T2 Weighted Image
    • Gradient Echo Sequence
 
Further Reading:
  News & More:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Usefulness of MR Imaging for Diseases of the Small Intestine: Comparison with CT
2000   by www.ncbi.nlm.nih.gov    
Searchterm 'Coherence' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (3) Open this link in a new window
Magnetic Resonance Angiography MRAMRI Resource Directory:
 - MRA -
 
(MRA) Magnetic resonance angiography is a medical imaging technique to visualize blood filled structures, including arteries, veins and the heart chambers. This MRI technique creates soft tissue contrast between blood vessels and surrounding tissues primarily created by flow, rather than displaying the vessel lumen. There are bright blood and black blood MRA techniques, named according to the appearance of the blood vessels. With this different MRA techniques both, the blood flow and the condition of the blood vessel walls can be seen. Flow effects in MRI can produce a range of artifacts. MRA takes advantage of these artifacts to create predictable image contrast due to the nature of flow.
Technical parameters of the MRA sequence greatly affect the sensitivity of the images to flow with different velocities or directions, turbulent flow and vessel size.
This are the three main types of MRA:
All angiographic techniques differentially enhance vascular MR signal. The names of the bright blood techniques TOF and PCA reflect the physical properties of flowing blood that were exploited to make the vessels appear bright. Contrast enhanced magnetic resonance angiography creates the angiographic effect by using an intravenously administered MR contrast agent to selectively shorten the T1 of blood and thereby cause the vessels to appear bright on T1 weighted images.
MRA images optimally display areas of constant blood flow-velocity, but there are many situations where the flow within a voxel has non-uniform speed or direction. In a diseased vessel these patterns are even more complex. Similar loss of streamline flow occurs at all vessel junctions and stenoses, and in regions of mural thrombosis. It results in a loss of signal, due to the loss of phase coherence between spins in the voxel.
This signal loss, usually only noticeable distal to a stenosis, used to be an obvious characteristic of MRA images. It is minimized by using small voxels and the shortest possible TE. Signal loss from disorganized flow is most noticeable in TOF imaging but also affects the PCA images.
Indications to perform a magnetic resonance angiography (MRA):
•
Detection of aneurysms and dissections
•
Evaluation of the vessel anatomy, including variants
•
Blockage by a blood clot or stenosis of the blood vessel caused by plaques (the buildup of fat and calcium deposits)

Conventional angiography or computerized tomography angiography (CT angiography) may be needed after MRA if a problem (such as an aneurysm) is present or if surgery is being considered.

See also Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Angiogram
spacer
Medical-Ultrasound-Imaging.comVascular Ultrasound,  Intravascular Ultrasound
spacer

• View the DATABASE results for 'Magnetic Resonance Angiography MRA' (3).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Angiography MRA' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MR–ANGIOGRAPHY(.pdf)
  News & More:
3-D-printed model of stenotic intracranial artery enables vessel-wall MRI standardization
Friday, 14 April 2017   by www.eurekalert.org    
Conventional MRI and MR Angiography of Stroke
2012   by www.mc.vanderbilt.edu    
MR Angiography Highly Accurate In Detecting Blocked Arteries
Thursday, 1 February 2007   by www.sciencedaily.com    
MRI Resources 
Knee MRI - NMR - Safety Products - Manufacturers - Used and Refurbished MRI Equipment - Case Studies
 
Phase Shift
 
The phase shift is the loss of phase coherence in precessing spins. Vascular spins move at variable velocities; faster flow undergo a stronger phase shift than slower flowing spins.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Phase Shift' (10).Open this link in a new window

Searchterm 'Coherence' was also found in the following services: 
spacer
Forum  (6)  
 
Rapid Excitation Magnetic Resonance ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(RE MRI) There are several approaches to speeding up the MRI data acquisition process by repeating the excitation by RF pulses in times short compared to T1, typically using small flip angles and gradient echo refocusing. When TR is also on the order of or shorter than T2, the repeated RF pulses will tend to refocus transverse magnetization remaining from prior excitations, setting up a condition of steady state free precession, and a dependence of signal strength (and image contrast) on both T1 and T2.
This can be modified in various ways, particularly:
1) to spoil the tendency to build up a steady state by reducing coherence between excitations, e.g. by variation of the phase or timing of consecutive RF pulses or of the strength of spoiler gradient pulses, thus increasing the relative dependence of signal strength on T1 or
2) acquire the signal when it is refocusing immediately prior to the next RF pulse, thus increasing the relative dependence of signal strength on T2.

See also Ultrafast Gradient Echo Sequence.
spacer

• View the DATABASE results for 'Rapid Excitation Magnetic Resonance Imaging' (2).Open this link in a new window

Searchterm 'Coherence' was also found in the following services: 
spacer
Radiology  (2) Open this link in a new windowUltrasound  (3) Open this link in a new window
Rephasing
 
The process of returning out of phase magnetic moments back into phase coherence. Caused either by rapidly reversing a magnetic gradient (Field Echo) or by applying a 180° RF pulse (Spin Echo). In the spin echo pulse sequence this action effectively cancels out the spurious T2* information from the signal.

See also Spin Echo Sequence and Gradient Echo Sequence.
spacer

• View the DATABASE results for 'Rephasing' (21).Open this link in a new window

MRI Resources 
IR - Spine MRI - NMR - MR Myelography - Intraoperative MRI - General
 
previous      6 - 10 (of 19)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]