Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Electric Field Gradient' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Electric Field Gradient' found in 0 term [] and 1 definition [], (+ 7 Boolean[] results
previous     6 - 8 (of 8)     
Result Pages : [1]  [2]
MRI Resources 
Safety Training - Corporations - Contrast Agents - Contrast Enhanced MRI - Online Books - Breast Implant
 
Hardware
 
MRI hardware includes the electrical and mechanical components of a scanning device.
The main hardware components for the MRI machine are:
The magnet establishing the B0 field to align the spins.
Within the magnet are the gradient coils for producing variations in B0 in the X, Y, and Z directions to make a localization of the received data possible.
Within the gradient coil or directly on the object being imaged is the radio frequency (RF) coil. This RF coil is used to establish the B1 magnetic field necessary to excite the spinning nuclei. The RF coil also detects the signal emitted from the spins within the object being imaged.
The RF amplifier increases the power of the pulses.
The analog to digital converter converts the received analog raw data into digital values.
Depending on the design of the device and the body part being imaged the patient is positioned inside the magnet (e.g. on a movable table or standing upright).
The MRI scan room is surrounded by a RF shield (Faraday cage).
In addition, a computer console, a display, and a film printer belong to the MRI equipment.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradCT Scanner,  Gamma Camera
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine
spacer
 
• Related Searches:
    • Computer
    • Receiver
    • Shim Coils
    • Faraday Shield
    • Faraday Cage
 
Further Reading:
  Basics:
Imaging Hardware
   by www.fmrib.ox.ac.uk    
  News & More:
Why non-magnetic capacitors matter in medical imaging
Wednesday, 19 February 2020   by www.medicaldesignandoutsourcing.com    
A transportable MRI machine to speed up the diagnosis and treatment of stroke patients
Wednesday, 22 April 2015   by medicalxpress.com    
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
Education pool - Spectroscopy - RIS - NMR - DICOM - Musculoskeletal and Joint MRI
 
Nerve Conductivity
 
Rapid echo planar imaging and high-performance MRI gradient systems create fast-switching magnetic fields that can stimulate muscle and nerve tissues produced by either changing the electrical resistance or the potential of the excitation. There are apparently no effects on the conduction of impulses in the nerve fiber up to field strength of 0.1 T. A preliminary study has indicated neurological effects by exposition to a whole body imager at 4.0 T. Theoretical examinations argue that field strengths of 24 T are required to produce a 10% reduction of nerve impulse conduction velocity.
Nerve stimulations during MRI scans can be induced by very rapid changes of the magnetic field. This stimulation may occur for example during diffusion weighted sequences or diffusion tensor imaging and can result in muscle contractions caused by effecting motor nerves. The so-called magnetic phosphenes are attributed to magnetic field variations and may occur in a threshold field change of between 2 and 5 T/s. Phosphenes are stimulations of the optic nerve or the retina, producing a flashing light sensation in the eyes. They seem not to cause any damage in the eye or the nerve.
Varying magnetic fields are also used to stimulate bone-healing in non-unions and pseudarthroses. The reasons why pulsed magnetic fields support bone-healing are not completely understood. The mean threshold levels for various stimulations are 3600 T/s for the heart, 900 T/s for the respiratory system, and 60 T/s for the peripheral nerves.
Guidelines in the United States limit switching rates at a factor of three below the mean threshold for peripheral nerve stimulation. In the event that changes in nerve conductivity happens, the MRI scan parameters should be adjusted to reduce dB/dt for nerve stimulation.
spacer

• View the DATABASE results for 'Nerve Conductivity' (2).Open this link in a new window

 
Further Reading:
  Basics:
Electrical eddy currents in the human body: MRI scans and medical implants
   by www.phy.olemiss.edu    
  News & More:
NERVE STIMULATORS
Tuesday, 18 January 2005   by www.health.adelaide.edu.au    
Conductivity tensor mapping of the human brain using diffusion tensor MRI
   by www.pnas.org    
MRI Resources 
Service and Support - Mobile MRI - Hospitals - MR Guided Interventions - Liver Imaging - Services and Supplies
 
Magnetohydrodynamic Effect
 
This effect is an additional electrical charge generated by ions in blood (loaded particles) moving perpendicular to the magnetic field. At 1.5 T, no significant changes are expected; at 6.0 T a 10% blood pressure change is expected. A blood pressure increase is predicted theoretically for a field of 10 T. This is claimed to be caused by interaction of induced electrical potentials and currents within a solution, e.g. blood, and an electrical volume force causing a retardation in the direction opposite to the fluid flow. This decrease in blood flow-velocity must be compensated for by an elevation in pressure.
Static magnetic field gradients of 0.01 T/cm (100 G/cm) make no significant difference in the membrane transport processes. The influence of a static magnetic field upon erythrocytes is not sufficient to provoke sedimentation, as long as there is a normal blood circulation.
mri safety guidance
MRI Safety Guidance
The magnetohydrodynamic effect which results from a voltage occurring across a vessel in a magnetic field, is irrelevant at the field strengths used.
spacer

• View the DATABASE results for 'Magnetohydrodynamic Effect' (3).Open this link in a new window

 
Further Reading:
  News & More:
Measuring magnetic force field distributions in microfluidic devices: Experimental and numerical approaches
Saturday, 2 December 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
MRI Resources 
Pathology - Online Books - Supplies - MRCP - Services and Supplies - Jobs
 
previous      6 - 8 (of 8)     
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]