Magnetic Resonance - Technology Information Portal Welcome to MRI Technology••
Info
  Sheets


Out-
      side
 



 
 'TrueFISP' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'TrueFISP' found in 0 term [] and 6 definitions []
1 - 5 (of 6)     next
Result Pages : [1 2]
MRI Resources 
Guidance - Jobs pool - Societies - Crystallography - Safety Products - Libraries
 
Fast Imaging with Steady PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(TrueFISP) True fast imaging with steady state precession is a coherent technique that uses a fully balanced gradient waveform. The image contrast with TrueFISP is determined by T2*//T1 properties and mostly depending on TR. The speed and relative motion insensitivity of acquisition help to make the technique reliable, even in patients who have difficulty with holding their breath.
Recent advances in gradient hardware have led to a decreased minimum TR. This combined with improved field shimming capabilities and signal to noise ratio, has allowed TrueFISP imaging to become practical for whole-body applications. There's mostly T2* weighting. With the used ultrashort TR-times T1 weighting is almost impossible. One such application is cardiac cine MR with high myocardium-blood contrast. Spatial and temporal resolution can be substantially improved with this technique, but contrast on the basis of the ratio of T2* to T1 is not sufficiently high in soft tissues. By providing T1 contrast, TrueFISP could then document the enhancement effects of T1 shortening contrast agents. These properties are useful for the anatomical delineation of brain tumors and normal structures. With an increase in SNR ratio with minimum TR, TrueFISP could also depict the enhancement effect in myoma uteri. True FSIP is a technique that is well suited for cardiac MR imaging. The imaging time is shorter and the contrast between the blood and myocardium is higher than that of FLASH.
See Steady State Free Precession.

 
Images, Movies, Sliders:
 Cardiac Infarct 4 Chamber Cine 1  Open this link in a new window
    
 
spacer
 
• Share the entry 'Fast Imaging with Steady Precession':  Facebook  Twitter  LinkedIn  
 
Further Reading:
  Basics:
Accurate T1 Quantification Using a Breath-hold Inversion Recovery TrueFISP Sequence
2003   by rsna2003.rsna.org    
MRI Resources 
Coils - Lung Imaging - Equipment - Directories - Most Wanted - MR Guided Interventions
 
Constructive Interference Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(CISS) This gradient echo sequence is a stimulated T2 echo. Two TrueFISP sequences are acquired with differing RF pulses and than combined for strong T2 Weighted high resolution 3D images.
These TrueFISP sequences are normally affected by dark phase dispersion bands, which are caused by patient induced local field inhomogeneities and made prominent by the relatively long TR used. The different excitation pulse regimes offset these bands in the 2 sequences. Combining the images results in a picture free of banding. The image combination is performed automatically after data collection, adding some time to the reconstruction process. The advantage of the 3D CISS sequence is its combination of high signal levels and extremely high spatial resolution.
Used for, e.g. inner ear, cranial nerves and cerebellum.
See also Steady State Free Precession.

spacer
 
Further Reading:
  News & More:
Pediatric and Adult Cochlear Implantation1
2003   by radiographics.rsnajnls.org    
MRI Resources 
Contrast Agents - Equipment - Cardiovascular Imaging - General - MRCP - Stent
 
Balanced SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with Steady Precession (TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG).

 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Infarct 4 Chamber Cine  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Balanced Sequence' (5).Open this link in a new window

 
Further Reading:
  News & More:
Generic Eddy Current Compensation for Rapid Magnetic Resonance Imaging(.pdf)
   by www.switt.ch    
Magnetic resonance imaging guided musculoskeletal interventions at 0.23T: Chapter 4. Materials and methods
2002
MRI Resources 
Open Directory Project - MR Myelography - Crystallography - Used and Refurbished MRI Equipment - Devices - Artifacts
 
Coherent Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.

spacer

• View the DATABASE results for 'Coherent Gradient Echo' (6).Open this link in a new window

MRI Resources 
Diffusion Weighted Imaging - Movies - Calculation - Breast Implant - Shoulder MRI - Journals
 
Coronary AngiographyMRI Resource Directory:
 - Cardiovascular Imaging -
 
(MRI-CA, MRCA) The noninvasive imaging of the coronary arteries using magnetic resonance imaging of the heart.
For cardiac MRI-CA, high performance machines are necessary with minimum 40mT/m and 300µsec slew rate.
2D and 3D acquisition are used for fast gradient echo sequences with techniques for minimizing cardiac and respiratory motion and suppressing the high signal of pericardial fat. The optimal sequences seem to be trueFISP, Balanced FFE or FIESTA with SMASH and SENSE techniques. Respiratory motion is minimized for 3D acquisitions by using respiratory gating, especially using navigator echoes (Navigator Technique) to track diaphragmatic and cardiac movement. Optimization of MR technique can provide mapping of long segments of the coronary arteries.
Blood pool agents are being applied to improve the reliability of coronary MR angiography. The major current clinical indication is the identification of coronary artery anomalies because the diagnostic accuracy's for identifying haemodynamically significant stenoses are variable depending of the image quality.
See also Magnetic Resonance Angiography, and Cardiac MRI.

spacer

• View the DATABASE results for 'Coronary Angiography' (7).Open this link in a new window

 
Further Reading:
  Basics:
Role of Magnetic Resonance Imaging in Visualizing Coronary Arteries
Monday, 2 August 2004   by www.clinmedres.org    
  News & More:
Graphic illustration
Tuesday, 12 February 2008   by www.theengineer.co.uk    
MRI Resources 
Raman Spectroscopy - Pathology - MRI Technician and Technologist Schools - Cochlear Implant - Pregnancy - DICOM
 
     1 - 5 (of 6)     next
Result Pages : [1 2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?  



In 2075 (after about 100 years of ...) the MRI scan will be :
obsolete 
done with handheld probe 
done at home (app, ...) 
a 3 second walk through 
daily done 
replaced by something much ... 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • US-TIP • 
Copyright © 2003 - 2018 SoftWays. All rights reserved. [ 20 January 2019]
Terms of Use | Privacy Policy | Advertising
 [last update: 2018-03-08 05:11:00]