Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Second' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Second' found in 1 term [] and 82 definitions []
previous     41 - 45 (of 83)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
Searchterm 'Second' was also found in the following services: 
spacer
News  (51)  Resources  (6)  Forum  (16)  
 
MAGNETOM Verio
 
www.healthcare.siemens.com/magnetic-resonance-imaging/3t-mri-scanner/magnetom-verio From Siemens Medical Systems;
Received FDA clearance in 2007.
The MAGNETOM Verio provides up to 102 integrated matrix coil elements and up to 32 independent radiofrequency channels that allow flexible coil combinations to make patient and coil repositioning virtually unnecessary. The Tim (total imaging matrix) technology also increases patient throughput due to a shorter scan time.
The open bore design offers great comfort for patients of all shapes and sizes.
Device Information and Specification
CLINICAL APPLICATION
Whole Body
CONFIGURATION
Ultra-short open bore
3 Tesla
Head, spine, torso/ body coil, neurovascular, cardiac, neck and multi-purpose flex coils. Peripheral vascular, breast, shoulder, knee, wrist, foot//ankle, TMJ optional.
CHANNELS (min. / max. configuration)
8, 18, 32
Chemical shift imaging, single voxel spectroscopy
IMAGING TECHNIQUES
iPAT, mSENSE and GRAPPA (image, k-space), noncontrast angiography, radial motion compensation, Dixon
MINIMUM TR
3-D GRE: 1.5 (256 matrix)
MINIMUM TE
3-D GRE: 0.63 (256 matrix)
FOV
0.5 - 50 cm
BORE DIAMETER
or W x H
At isocenter: L-R 70 cm, A-P 55 cm
TABLE CAPACITY
250 kg
MAGNET WEIGHT (gantry included)
8200 kg
DIMENSION H*W*D (gantry included)
173 x 230 x 222 cm
5-GAUSS FRINGE FIELD
2.6 m / 4.6 m
CRYOGEN USE
Zero boil off rate, refill approx. 10 years
COOLING SYSTEM
Water
up to 200 T/m/s
MAX. AMPLITUDE
45 mT/m
Passive, active; first order, second order standard
POWER REQUIREMENTS
380 / 400 / 420 / 440 / 460 / 480 V, 3-phase + ground; 110 kVA
spacer
Searchterm 'Second' was also found in the following services: 
spacer
Radiology  (26) Open this link in a new windowUltrasound  (49) Open this link in a new window
MAGNETOM邃「InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.siemens.com From Siemens Medical Systems;
70 cm + 125 cm + 1.5T and Tim - a combination never seen before in MRI ... MAGNETOM Espree邃「s unique open bore design can accommodate more types of patients than other 1.5T systems on the market today, in particular the growing population of obese patients. The power of 1.5T combined with Tim technology boosts signal to noise, which is necessary to adequately image obese patients.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Open bore
Body, Tim [32 x 8], Tim [76 coil elements with up to 18 RF channels])
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
GRE, IR, FIR, STIR, TrueIR/FISP, FSE, FLAIR, MT, SS-FSE, MT-SE, MTC, MSE, EPI, 3D DESS//CISS/PSIF, GMR
IMAGING MODES
Single, multislice, volume study, multi angle, multi oblique
SINGLE/MULTI SLICE
Image Processor reconstructing up to 3226 images per second (256 x 256, 25% recFoV)
FOV
35 cm coronal//sagittal, 45 cm axial
Min 2D/3D: 0.1/0.05 mm
1024 x 1024 full screen display
MEASURING MATRIX
64 x 64 to 1024 x 1024
BORE DIAMETER
or W x H
70 cm diameter
MAGNET WEIGHT
3800 kg
H*W*D
? x ? x 125 cm
STRENGTH
33 mT/m
5-GAUSS FRINGE FIELD
2.5 m / 3.8 m
Passive, active
spacer

• View the DATABASE results for 'MAGNETOM Espree™' (2).Open this link in a new window

 
Further Reading:
  News & More:
First 1.5 Tesla Open Bore MRI Introduced
Tuesday, 10 August 2004   by www.hospimedica.com    
Obesity May Influence Imaging Diagnosis
Wednesday, 22 December 2004   by www.hospimedica.com    
MRI Resources 
Movies - MRI Reimbursement - Shoulder MRI - IR - Non-English - Jobs pool
 
Machine Imperfection ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Machine imperfection, data error
DESCRIPTION
Striped ghosts with a shift of half the field of view
REASON
Non-uniform sampling, phase differences
HELP
Data correction
Machine imperfection-based artifacts manifest themselves due to the fact that the odd k-space lines are acquired in a different direction than the even k-space lines. Slight differences in timing result in shifts of the echo in the acquisition window. By the shift theorem, such shifts in the time domain data then produce linear phase differences in the frequency domain data.
Without correction, such phase differences in every second line produce striped ghosts with a shift of half the field of view, so-called Nyquist ghosts. Shifts in the applied magnetic field can also produce similar (but constant in amplitude) ghosts.
This artifact is commonly seen in an EPI image and can arise from both, hardware and sample imperfections.
A further source of machine-based artifact arises from the need to acquire the signal as quickly as possible. For this reason the EPI signal is often acquired during times when the gradients are being switched. Such sampling effectively means that the k-space sampling is not uniform, resulting in ringing artifacts in the image.
mri safety guidance
Image Guidance
Such artifacts can be minimized by careful setup of the spectrometer and/or correction of the data. For this reasons reference data are often collected, either as a separate scan or embedded in the imaging data. The non-uniform sampling can be removed by knowing the form of the gradient switching. It is possible to regrid the data onto a uniform k-space grid.
spacer

• View the DATABASE results for 'Machine Imperfection Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
Searchterm 'Second' was also found in the following services: 
spacer
News  (51)  Resources  (6)  Forum  (16)  
 
MagneVu 1000InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.mri4ra.com/isis.html From MagneVu;
The MagneVu 1000 is a compact, robust, and portable, permanent magnet MRI system and operates without special shielding or costly site preparation.
This MRI device utilizes a patented non-homogeneous magnetic field image acquisition method to achieve high performance imaging. The MagneVu 1000 MRI scanner is designed for MRI of the extremities with the current specialty areas in diabetes and rheumatoid arthritis. Easy access is afforded for claustrophobic, pediatric, or limited mobility patients.
In August 1998 FDA marketing clearance and other regulatory approvals have been received.
Until 2008, over 130 devices in the US are in use. Some further developments of MagneVu's extremity scanner are: 'truly Plug n' Play MRI™' and iSiS ( which adds wireless capability to the second generation MV1000-XL).
Device Information and Specification
CLINICAL APPLICATION
Dedicated extremity
CONFIGURATION
Portable open MRI
IMAGING MODES
3-dimensional multi-echo data acquisition
3D: 0.6-1 mm
MAGNET TYPE
Permanent
MAGNET WEIGHT
about 50 kg
POWER REQUIREMENTS
110 V
spacer

• View the DATABASE results for 'MagneVu 1000' (3).Open this link in a new window

 
Further Reading:
  News & More:
VALUE OF 3D T1W & STIR MRI SEQUENCES IN DIAGNOSING EROSIONS IN RHEUMATOID ARTHRITIS
   by www.bocaradiology.com    
Searchterm 'Second' was also found in the following services: 
spacer
Radiology  (26) Open this link in a new windowUltrasound  (49) Open this link in a new window
Magnetic Fringe FieldInfoSheet: - Coils - 
Intro, 
Overview, 
etc.
 
The region surrounding a magnet and exhibiting a magnetic field strength, which is significantly higher than the earth's magnetic field (typically 0.05-0.1 mT, depending on geographical location). Initially the most magnets had very extensive fringe fields. Magnets with iron have reduced the fringe field substantially (passively shielded magnets). At least, adding appropriate additional superconducting coils to superconducting magnets has resulted in a drastic reduction of the extent of the fringe fields (actively shielded magnets).
Due to the physical properties of magnetic fields, the magnetic flux, which penetrates the useful volume of the magnet will return through the surroundings of the magnet to form closed field lines. Depending on the magnet construction, the returning flux will penetrate large open spaces (unshielded magnets) or will be confined largely to iron yokes or through secondary coils (shielded magnets).
Fringe fields constitute one of the major hazards of MR scanners as these fields acting over extended distances outside the magnet produce strong attractive forces upon magnetic objects. These can thus 'fly' into the magnet when loose nearby acting like projectiles. Fringe fields also exert unwanted forces on metallic implants in patients.
spacer

• View the DATABASE results for 'Magnetic Fringe Field' (3).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic Field
   by hyperphysics.phy-astr.gsu.edu    
MRI Resources 
Research Labs - Non-English - Spectroscopy pool - MRI Accidents - MRI Reimbursement - Chemistry
 
previous      41 - 45 (of 83)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]