Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Radio Frequency' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Radio Frequency' found in 12 terms [] and 63 definitions []
previous     21 - 25 (of 75)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15]
Searchterm 'Radio Frequency' was also found in the following services: 
spacer
News  (7)  Resources  (2)  Forum  (3)  
 
Magnetic Shielding
 
Means to confine the region of strong magnetic field surrounding a magnet; most commonly the use of material with high permeability (passive shielding) or by employing secondary counteracting coils outside of the primary coils (active shielding). The high permeability material can be employed in the form of a yoke immediately surrounding the magnet (self-shielding) or installed in the walls of a room as full or partial room-shielding. Unlike shielding ionizing radiation, for example, magnetic shielding can only be accomplished by forcing the unavoidable magnetic return flux through more confined areas or structures, not by absorbing it.

See also Radio Frequency Shielding Radio Frequency Shielding, and Faraday cage.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
spacer
 
• Related Searches:
    • 5 Gauss Fringe Field
    • Electromagnet
    • Superconducting Magnet
    • Magnetic Fringe Field
    • Room Shielding
 
Further Reading:
  Basics:
Faraday's Law
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
Magnetic Sensitivity of MRI Systems to External Iron: The Design Process
   by www.integratedsoft.com    
Searchterm 'Radio Frequency' was also found in the following service: 
spacer
Radiology  (2) Open this link in a new window
Saturation Recovery
 
(SR) Particular type of partial saturation pulse sequence in which the preceding pulses leave the spins in a state of saturation, so that recovery at the time of the next pulse has taken place from an initial condition of no magnetization. A rare used MRI pulse sequence that generates a predominantly proton density dependent signal, basically employing a 90° RF excitation pulse, with a very long repetition time. With this technique T1 times can be measured faster than with inversion recovery pulse sequences.
This saturation recovery sequence consists of multiple 90° radio frequency (RF) pulses with a short repetition time. A spoiler gradient pulse dephases the longitudinal magnetization that remains after the first 90° radio frequency pulse. A repetition time interval after the application of this spoiling gradient turns an additional 90° pulse the new developed longitudinal magnetization into the transverse plane, followed by recording a gradient echo.
spacer

• View the DATABASE results for 'Saturation Recovery' (5).Open this link in a new window

 
Further Reading:
  Basics:
Contrast mechanisms in magnetic resonance imaging
2004   by www.iop.org    
MRI Resources 
Safety pool - Claustrophobia - Universities - DICOM - Functional MRI - PACS
 
Specific Absorption Rate
 
(SAR) The Specific Absorption Rate is defined as the RF power absorbed per unit of mass of an object, and is measured in watts per kilogram (W/kg).
The SAR describes the potential for heating of the patient's tissue due to the application of the RF energy necessary to produce the MR signal. Inhomogeneity of the RF field leads to a local exposure where most of the absorbed energy is applied to one body region rather than the entire person, leading to the concept of a local SAR. Hot spots may occur in the exposed tissue, to avoid or at least minimize effects of such theoretical complications, the frequency and the power of the radio frequency irradiation should be kept at the lowest possible level. Averaging over the whole body leads to the global SAR.
It increases with field strength, radio frequency power and duty cycle, transmitter-coil type and body size. The doubling of the field strength from 1.5 Tesla (1.5T) to 3 Tesla (3T) leads to a quadrupling of SAR. In high and ultrahigh fields, some of the multiple echo, multiple-slice pulse sequences may create a higher SAR than recommended by the agencies. SAR can be reduced by lower flip angle and longer repetition times, which could potentially affect image contrast.
Normally no threatening increase in temperature could be shown. Even in high magnetic fields, the local temperature increases not more than 1°C. 2.1°C is the highest measured increase in skin temperature. Eddy currents may heat up implants and thus may cause local heating.

FDA SAR limits:
•
Whole body: 4W/kg/15-minute exposure averaged;
•
Head: 3W/kg/10-minute exposure averaged;
•
Head or torso: 8W/kg/5 minute exposure per gram of tissue;
•
Extremities: 12W/kg/5 minute exposure per gram of tissue.

IEC (International Electrotechnical Commission) SAR limits of some European countries:
All limits are averaged over 6 minutes.
•
Level 0 (normal operating mode): Whole body 2W/kg; Head 3.2W/kg; Head or Torso (local) 10W/kg; Extremities (local) 20W/kg;
•
Level I (first level controlled operating mode): Whole body 4W/kg; Head 3.2W/kg; Head or Torso (local) 10W/kg; Extremities (local) 20W/kg;
•
Level II (second level controlled operating mode): All values are over Level I values.
(For more details: IEC 60601-2-33 (2002))

In most countries standard MRI systems are limited to a maximum SAR of 4 W/kg, so most scanning in level II is impossible.
For Level I, in addition to routine monitoring, particular caution must be exercised for patients who are sensitive to temperature increases or to RF energy.
For Japan different SAR limits are valid.
spacer

• View the DATABASE results for 'Specific Absorption Rate' (8).Open this link in a new window


• View the NEWS results for 'Specific Absorption Rate' (1).Open this link in a new window.
 
Further Reading:
  Basics:
SED Guidance
Saturday, 1 January 2022   by www.mriphysics.scot.nhs.uk    
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Thursday, 2 March 2017   by www.ncbi.nlm.nih.gov    
What MRI Sequences Produce the Highest Specific Absorption Rate (SAR), and Is There Something We Should Be Doing to Reduce the SAR During Standard Examinations?
Thursday, 16 April 2015   by www.ajronline.org    
Evaluation of Specific Absorption Rate as a Dosimeter of MRI-Related Implant Heating
2004   by www.imrser.org    
  News & More:
Specific Absorption Rate and Specific Energy Dose: Comparison of 1.5-T versus 3.0-T Fetal MRI
Tuesday, 7 April 2020   by pubs.rsna.org    
MRI in Patients with Implanted Devices: Current Controversies
Monday, 1 August 2016   by www.acc.org    
Commission delays electromagnetic fields legislation
Monday, 29 October 2007   by cordis.europa.eu:80    
Accounting for biological aggregation in heating and imaging of magnetic nanoparticles
Tuesday, 2 September 2014   by www.ecnmag.com    
Guidance for Industry and FDA Staff, Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices
Monday, 14 July 2003   by www.fda.gov    
Searchterm 'Radio Frequency' was also found in the following services: 
spacer
News  (7)  Resources  (2)  Forum  (3)  
 
Spoiled Gradient Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Spoiled gradient echo sequences use a spoiler gradient on the slice select axis during the end module to destroy any remaining transverse magnetization after the readout gradient, which is the case for short repetition times.
As a result, only z-magnetization remains during a subsequent excitation. This types of sequences use semi-random changes in the phase of radio frequency pulses to produce a spatially independent phase shift.
Companies use different acronyms to describe certain techniques.

Different terms for these gradient echo pulse sequences:
CE-FFE-T1 Contrast Enhanced Fast Field Echo with T1 Weighting,
GFE Gradient Field Echo,
FLASH Fast Low Angle Shot,
PS Partial Saturation,
RF spoiled FAST RF Spoiled Fourier Acquired Steady State Technique,
RSSARGE Radio Frequency Spoiled Steady State Acquisition Rewound Gradient Echo
S-GRE Spoiled Gradient Echo,
SHORT Short Repetition Techniques,
SPGR Spoiled Gradient Recalled (spoiled GRASS),
STAGE T1W T1 weighted Small Tip Angle Gradient Echo,
T1-FAST T1 weighted Fourier Acquired Steady State Technique,
T1-FFE T1 weighted Fast Field Echo.
In this context, 'contrast enhanced' refers to the pulse sequence, it does not mean enhancement with a contrast agent.
spacer

• View the DATABASE results for 'Spoiled Gradient Echo Sequence' (11).Open this link in a new window

 
Further Reading:
  News & More:
3-D VOLUMETRIC IMAGING FOR STEREOTACTIC LESIONAL AND DEEP BRAIN STIMULATION SURGERY
Cutting Edge Imaging of THE Spine
February 2007   by www.pubmedcentral.nih.gov    
Searchterm 'Radio Frequency' was also found in the following service: 
spacer
Radiology  (2) Open this link in a new window
Zipper ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Zipper, star
DESCRIPTION
Bands through image center
REASON
Hardware or software problems
HELP
Larger FOV, oversampling
Zipper artifacts appear as dashed lines. There are various causes for this MRI artifact.
Most of zipper artifacts result from inhomogeneities of the magnetic field caused by interferences with radio frequency from various sources ('your radio is working in the scanner room means your shielding is not working'). Software and equipment problems can also cause zipper lines in both directions.
mri safety guidance
Image Guidance
Scanning room door during the acquisition of images is closed, shielding is working, and all disturbing devices are removed?

See also Room Shielding, Active Shielding, Radio Frequency Shielding.
spacer
MRI Resources 
Libraries - Homepages - Functional MRI - Journals - Safety Products - Mobile MRI Rental
 
previous      21 - 25 (of 75)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 19 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]