Magnetic Resonance - Technology Information Portal Welcome to MRI Technology••


 'Pulse Sequence' 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Pulse Sequence' found in 5 terms [] and 166 definitions []
previous     26 - 30 (of 171)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Pulse Sequence' was also found in the following services: 
News  (2)  Resources  (5)  Forum  (10)  
Gradient Motion Rephasing
(GMR) The application of strategic gradient pulses can compensate the objectionable spin phase effects of flow motion. That means the reducing of flow effects, e.g. gradient moment nulling of the first order of flow. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. E.g. the adjustment to zero at the time TE of the net moments of the amplitude of the waveform of the magnetic field gradients with time. The zeroth moment is the area under the curve, the first moment is the 'center of gravity' etc. The aim is to minimize the phase shifts acquired by the transverse magnetization of excited nuclei moving along the gradients (including the effect of refocusing RF pulses), particularly for the reduction of image artifacts due to motion.
Also called Flow Compensation (FC), Motion Artifact Suppression Technique (MAST), Flow motion compression (STILL), Gradient Rephasing (GR), Shimadzu Motion Artifact Reduction Technique (SMART).
Further Reading:
Motion Compensation in MR Imaging
Searchterm 'Pulse Sequence' was also found in the following service: 
Ultrasound  (1) Open this link in a new window
Interpulse Times
(T) Times between successive RF pulses used in pulse sequences. Particularly important are the inversion time (TI) in inversion recovery, and the time between 90° pulse and the subsequent 180° pulse to produce a spin echo, which will be approximately one half the spin echo time(TE). The time between repetitions of pulse sequences is the repetition time(TR).

• View the DATABASE results for 'Interpulse Times' (7).Open this link in a new window

MRI Resources 
MRI Centers - Stimulator pool - Spectroscopy pool - Implant and Prosthesis pool - Brain MRI - Pathology
Knee MRI
Knee MRI, with its high soft tissue contrast is one of the main imaging tools to depict knee joint pathology. MRI allows accurate imaging of intra-articular structures such as ligaments, cartilage, menisci, bone marrow, synovium, and adjacent soft tissue.
Knee exams require a dedicated extremity coil, providing a homogenous imaging volume and high SNR to ensure best signal coverage. A complete knee MR examination includes for example sagittal and coronal T1 weighted, and proton density weighted pulse sequences +/- fat saturation, or STIR sequences. For high spatial resolution, maximal 4 mm thick slices with at least an in plane resolution of 0.75 mm and small gap are recommended. To depict the anterior cruciate ligament clearly, the sagittal plane has to be rotated 10 - 20° externally (parallel to the medial border of the femoral condyle). Retropatellar cartilage can bee seen for example in axial T2 weighted gradient echo sequences with Fatsat. However, the choice of the pulse sequences is depended of the diagnostic question, the used scanner, and preference of the operator.
Diagnostic quality in knee imaging is possible with field strengths ranging from 0.2 to 3T. With low field strengths more signal averages must be measured, resulting in increased scan times to provide equivalent quality as high field strengths.
More diagnostic information of meniscal tears and chondral defects can be obtained by direct magnetic resonance arthrography, which is done by introducing a dilute solution of gadolinium in saline (1:1000) into the joint capsule. The knee is then scanned in all three planes using T1W sequences with fat suppression. For indirect arthrography, the contrast is given i.v. and similar scans are started 20 min. after injection and exercise of the knee.
Frequent indications of MRI scans in musculoskeletal knee diseases are:
e.g., meniscal degeneration and tears, ligament injuries, osteochondral fractures, osteochondritis dissecans, avascular bone necrosis and rheumatoid arthritis.
See also Imaging of the Extremities and STIR.
Images, Movies, Sliders:
 Sagittal Knee MRI Images T1 Weighted  Open this link in a new window

 Anatomic MRI of the Knee 2  Open this link in a new window
SlidersSliders Overview

 Knee MRI Coronal Pd Spir 001  Open this link in a new window
 Sagittal Knee MRI Images STIR  Open this link in a new window

 Axial Knee MRI Images T2 Weighted  Open this link in a new window
 Anatomic MRI of the Knee 1  Open this link in a new window
SlidersSliders Overview

Radiology-tip.comArthrography,  Bone Scintigraphy
Radiology-tip.comMusculoskeletal and Joint Ultrasound,  Sonography

• View the DATABASE results for 'Knee MRI' (4).Open this link in a new window

• View the NEWS results for 'Knee MRI' (4).Open this link in a new window.
Further Reading:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by    
Knee, Anterior Cruciate Ligament Injuries (MRI)
Tuesday, 28 March 2006   by    
Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using Magnetic Resonance Imaging
Friday, 30 October 2009   by    
  News & More:
Researcher uses MRI to measure joint's geometry and role in severe knee injury
Tuesday, 23 September 2014   by    
Abnormalities on MRI predict knee replacement
Monday, 9 March 2015   by    
Financial Interest May Motivate Higher Knee MRI Referral
Wednesday, 4 December 2013   by    
Study: MRI scans of knees can be used for biometric identification
Wednesday, 23 January 2013   by    
Searchterm 'Pulse Sequence' was also found in the following services: 
News  (2)  Resources  (5)  Forum  (10)  
MAGNETOM Allegra™InfoSheet: - Devices -
Types of Magnets, 
etc.MRI Resource Directory:
 - Devices -
From Siemens Medical Systems; the 3 T MAGNETOM Allegra is a dedicated MR headscanner, perfect as a research system in cognitive and neuroscience with MRS and fMRI. MAGNETOM Allegra is a full member of the MAGNETOM product family. It uses many common components, i.e. electronics, computer system, software and pulse sequence concepts.
Device Information and Specification
SPECTROSCOPY Yes/Mutli-nuclear MRS
IMAGING MODES Single, multislice, volume study, multi angle, multi oblique
SINGLE/MULTI SLICE 178 images/sec at 256 x 256 at 100% FOV
FOV 22 cm
SLICE THICKNESS Min 2D/3D: 0.1/0.05 mm
DISPLAY MATRIX 1024 x 1024 full screen display
MEASURING MATRIX 64 x 64 to 1024 x 1024
MAGNET TYPE Superconducting
or W x H
60 x 60 cm
H*W*D 220 x 220 x 147 cm
POWER REQUIREMENTS 380/400/420/440/480 V
COOLING SYSTEM TYPE Single cryogen, 2 stage refrig.
CRYOGEN USE 0.1 L/hr helium
SHIMMING Passive, act.; 1st order std./2nd opt.

• View the DATABASE results for 'MAGNETOM Allegra™' (2).Open this link in a new window

Searchterm 'Pulse Sequence' was also found in the following service: 
Ultrasound  (1) Open this link in a new window
Magnetic Field Mapping
The mapping of the magnetic field by measuring or imaging the spatial distribution of magnetic field strength, can be performed by scanning with a probe and handles a large range of field strengths, but is slow and tedious. Accurate field maps can be made by measuring the Larmor frequency as a function of position.
The field must be homogeneous enough to allow MR imaging to be performed, than the magnetic field can be mapped by different methods.
1. The adaptation of chemical shift imaging.
2. The faster one measures the change in signal phase in an image obtained with a gradient echo pulse sequence resulting from a change in echo time TE, which is proportional to the local field strength.
Also useful is a spin echo pulse sequence with data collection from two time locations of the readout gradient and the data acquisition interval, where each having a known shift of the acquisition center away from the spin echo.
MRI Resources 
Equipment - NMR - Pregnancy - Process Analysis - Hospitals - Mobile MRI
previous      26 - 30 (of 171)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
Share This Page

Forgot your UserID/Password ?  

Acoustic Noise Reduction (Silent, Quiet, etc.) :
cannot get better 
is in its first steps 
is done by earplugs, headphones 
must get better 
is bad, I miss something 
is unnecessary 

      Ups uses cookies! By browsing, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • US-TIP • 
Copyright © 2003 - 2018 SoftWays. All rights reserved. [ 25 April 2019]
Terms of Use | Privacy Policy | Advertising
 [last update: 2018-03-08 05:11:00]