Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Phase Encoding Gradient' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Phase Encoding Gradient' found in 1 term [] and 22 definitions []
previous     6 - 10 (of 23)     next
Result Pages : [1]  [2 3 4 5]
MRI Resources 
Hospitals - Jobs - Directories - MR Myelography - Online Books - Breast MRI
 
Backfolding ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Backfolding, foldover, phase wrapping, wrap around
DESCRIPTION
Image wrap around
Backfolding always occurs due to wrong phase encoding caused by objects outside the planned FOV. Phase encoding gradients are scaled for the field of view only. Tissues outside the FOV do not get properly phase encoded relative to their actual position and 'wraps' into the opposite side of the image. The Backfolding artifact projects image contents which fall outside the imaging FOV back into the image; the back folded information thus reappearing on the other side of the image. In fact, information along the phase encoding direction can be viewed as projected onto a cylindrical screen with a circumference corresponding to the linear field of view dimension in the phase encoding direction.

See also Aliasing Artifact.
spacer
 
Further Reading:
  Basics:
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
Mass Spectrometry - Patient Information - Claustrophobia - Colonography - Service and Support - Services and Supplies
 
Blipped Phase Encoding
 
A strategy for incrementing the position of the k-space trajectory of an echo planar imaging (EPI) pulse sequence.
Echo planar imaging (EPI) uses a constant gradient amplitude in one direction. This, combined with an oscillating gradient system in the frequency encoding direction, produces a zigzag trajectory in k-space. In the blipped phase encoding variant of EPI, the k-space position in the phase encoded direction is incremented by gradient 'blips' of the appropriate area. These, when timed to occur during the reversals of the read-out gradient, produce a rectilinear path in k-space.
The artifacts in an EPI image can arise from both hardware and sample imperfections. These are most easily understandable from examination of the k-space trajectory involved, which is either a zigzag form (when using a constant phase encoding gradient) or a rastered zigzag (when the phase encoding is performed with small gradients at the end of each scan line, so-called 'blipped' EPI).
spacer
 
Further Reading:
  Basics:
Chapter 2 - Principles of Magnetic Resonance Imaging
   by www.fmrib.ox.ac.uk    
MRI Resources 
Spectroscopy - Directories - MRA - Manufacturers - Corporations - Examinations
 
Burst Pulse SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Burst pulse sequences are fast imaging sequences capable of image acquisition in less than 100 ms. Basically a train of low flip angle pulses generates a long train of echoes. The complete sequence is performed with the application of a constant read gradient. Phase encoding may be implemented using short phase encoding gradients between echoes.
The advantage of this sequence type is that it is less demanding on gradient speed than other fast techniques (e.g. echo planar imaging EPI) and it produces images, which are substantially free of susceptibility artifacts.
The disadvantage is that the technique is less sensitive than competing methods.
spacer
MRI Resources 
MRCP - Contrast Enhanced MRI - Jobs - Education pool - Colonography - IR
 
Cartesian Sampling
 
Cartesian sampling is used to refer to data collection with a fixed value of the phase encoding gradient. In 2D Fourier imaging with common Cartesian sampling of k-space sensitivity encoding by means of a receiver array enables to reduce the number of Fourier encoding steps. This is achieved by increasing the distance of sampling positions in k-space while maintaining the maximum k-values.
The Cartesian coordinates are obtained from the polar coordinates by the operations
x = r sin f
y = r cos f
using the trigonometric functions sine and cosine.
spacer

• View the DATABASE results for 'Cartesian Sampling' (4).Open this link in a new window

MRI Resources 
Breast Implant - Online Books - Cardiovascular Imaging - Jobs - Libraries - Non-English
 
Central Lines
 
A part in the k-space filled with signals made by phase encoding gradients (weak) used for contrast-determination.
spacer
MRI Resources 
Veterinary MRI - Societies - Functional MRI - MRI Technician and Technologist Career - DICOM - Services and Supplies
 
previous      6 - 10 (of 23)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 25 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]