Magnetic Resonance - Technology Information Portal Welcome to MRI Technology••
Info
  Sheets


Out-
      side
 



 
 'Magnetic Resonance Angiography' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Magnetic Resonance Angiography' found in 6 terms [] and 20 definitions []
1 - 5 (of 26)     next
Result Pages : [1 2]  [3 4 5 6]
Searchterm 'Magnetic Resonance Angiography' was also found in the following services: 
spacer
News  (13)  Resources  (12)  
 
Magnetic Resonance Angiography MRAMRI Resource Directory:
 - MRA -
 
(MRA) Magnetic resonance angiography is a medical imaging technique to visualize blood filled structures, including arteries, veins and the heart chambers. This MRI technique creates soft tissue contrast between blood vessels and surrounding tissues primarily created by flow, rather than displaying the vessel lumen. There are bright blood and black blood MRA techniques, named according to the appearance of the blood vessels. With this different MRA techniques both, the blood flow and the condition of the blood vessel walls can be seen. Flow effects in MRI can produce a range of artifacts. MRA takes advantage of these artifacts to create predictable image contrast due to the nature of flow.
Technical parameters of the MRA sequence greatly affect the sensitivity of the images to flow with different velocities or directions, turbulent flow and vessel size.
This are the three main types of MRA:
time of flight angiography (TOF)
phase contrast angiography (PCA)
contrast enhanced magnetic resonance angiography (CE-MRA)
All angiographic techniques differentially enhance vascular MR signal. The names of the bright blood techniques TOF and PCA reflect the physical properties of flowing blood that were exploited to make the vessels appear bright. Contrast enhanced magnetic resonance angiography creates the angiographic effect by using an intravenously administered MR contrast agent to selectively shorten the T1 of blood and thereby cause the vessels to appear bright on T1 weighted images.
MRA images optimally display areas of constant blood flow-velocity, but there are many situations where the flow within a voxel has non-uniform speed or direction. In a diseased vessel these patterns are even more complex. Similar loss of streamline flow occurs at all vessel junctions and stenoses, and in regions of mural thrombosis. It results in a loss of signal, due to the loss of phase coherence between spins in the voxel.
This signal loss, usually only noticeable distal to a stenosis, used to be an obvious characteristic of MRA images. It is minimized by using small voxels and the shortest possible TE. Signal loss from disorganized flow is most noticeable in TOF imaging but also affects the PCA images.
Indications to perform a magnetic resonance angiography (MRA):
Detection of aneurysms and dissections
Evaluation of the vessel anatomy, including variants
Blockage by a blood clot or stenosis of the blood vessel caused by plaques (the buildup of fat and calcium deposits)
Conventional angiography or computerized tomography angiography (CT angiography) may be needed after MRA if a problem (such as an aneurysm) is present or if surgery is being considered.
See also Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comCT Angiography,  Angiogram
spacer
Radiology-tip.comVascular Ultrasound,  Intravascular Ultrasound
spacer
 
• Share the entry 'Magnetic Resonance Angiography MRA':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Sensitivity Encoding
    • Angiography
    • Phase Contrast Angiography
    • Contrast Enhanced MRI
    • Cardiovascular Imaging
 
Further Reading:
  Basics:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MR–ANGIOGRAPHY(.pdf)
  News & More:
3-D-printed model of stenotic intracranial artery enables vessel-wall MRI standardization
Friday, 14 April 2017   by www.eurekalert.org    
Conventional MRI and MR Angiography of Stroke
2012   by www.mc.vanderbilt.edu    
MR Angiography Highly Accurate In Detecting Blocked Arteries
Thursday, 1 February 2007   by www.sciencedaily.com    
MRI Resources 
MRI Reimbursement - NMR - Online Books - Breast MRI - Most Wanted - Jobs pool
 
Inflow Magnetic Resonance AngiographyMRI Resource Directory:
 - MRA -
 
(I MRA) In MR imaging, inflowing non-saturated fluid gives a higher signal intensity than stationary tissue. This effect makes it especially useful for imaging of flowing blood. Other factors such as susceptibility and spin saturation, can affect the signal of the blood within the vessels. Furthermore turbulence is part of normal blood flow and can decrease signal intensity.
See also Time of Flight Angiography.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer
MRI Resources 
Lung Imaging - Fluorescence - Service and Support - Liver Imaging - Knee MRI - Mass Spectrometry
 
Moving Bed Magnetic Resonance AngiographyMRI Resource Directory:
 - MRA -
 
For a contrast enhanced MR angiography of the peripheral blood vessels, the patient reclines on a moveable table that moves under the MR machine to provide images of the abdomen, upper and lower legs in one procedure. A time optimized 3D gradient echo protocol with contrast agent and tabletop movement in several stages is used.
spacer
Searchterm 'Magnetic Resonance Angiography' was also found in the following services: 
spacer
News  (13)  Resources  (12)  
 
3 Dimensional Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(3D MRA) The 3D angiography technique can be applied to focus on fast flowing (arterial) blood and to visualize small tortuous vessels. 3D TOF images are less sensitive to turbulent flow artifacts. The advantage of this approach is that the signal, acquired from the entire volume has an increased signal to noise ratio. Slices are defined by a second phase encoded axis, which divides the volume into 'partitions'. 3D TOF MRA is acquired with 3D FT slabs or multiple overlapping thin 3D FT slabs (MOTSA) depending on the coverage required and the range of flow-velocities under examination.
Such 3D techniques can provide equal spatial resolution along all three axes, i.e. be 'isotropic', or the partition thickness can be greater or less than the in plane spatial resolution in which case can be said to be 'anisotropic'. The circle of Willis, anatomy as well as its fast arterial flow, lends itself well to both 3D TOF and 2D or 3D phase contrast angiography.
 
Images, Movies, Sliders:
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for '3 Dimensional Magnetic Resonance Angiography' (2).Open this link in a new window

 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
Image Quality - Artifacts - Developers - Services and Supplies - Jobs pool - Safety Products
 
Contrast Enhanced Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a sufficient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of in plane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
the possibility to perform a time resolved examination (similarly to conventional angiography);
no use of ionizing radiation; paramagnetic agents have a beneficial safety.


 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Contrast Enhanced Magnetic Resonance Angiography' (14).Open this link in a new window


• View the NEWS results for 'Contrast Enhanced Magnetic Resonance Angiography' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Contrast-Enhanced MR Angiography(.pdf)
   by ric.uthscsa.edu    
CONTRAST ENHANCED MR ANGIOGRAPHY – PRINCIPLES, APPLICATIONS, TIPS AND PITFALLS(.pdf)
  News & More:
CONTRAST-ENHANCED MRA OF THE CAROTIDS(.pdf)
PERIPHERAL VASCULAR MAGNETIC RESONANCE ANGIOGRAPHY(.pdf)
CONTRAST ENHANCED MRI OF THE LIVER STATE-OF-THE-ART(.pdf)
MRI Resources 
Used and Refurbished MRI Equipment - Absorption and Emission - MRI Physics - Crystallography - Devices - Calculation
 
     1 - 5 (of 26)     next
Result Pages : [1 2]  [3 4 5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?  



In 2020 your scanner will probably work with a field strength of :
lower 
1T 
1.5T 
2T 
3T 
7T 
higher 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • US-TIP • The-Medical-Market
Copyright © 2003 - 2018 SoftWays. All rights reserved. [ 21 October 2018]
Terms of Use | Privacy Policy | Advertising
 [last update: 2018-03-08 05:11:00]