Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Longitudinal Relaxation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Longitudinal Relaxation' found in 3 terms [] and 7 definitions [], (+ 11 Boolean[] results
previous     16 - 20 (of 21)     next
Result Pages : [1]  [2]  [3 4 5]
MRI Resources 
Manufacturers - NMR - Spectroscopy - Safety pool - Absorption and Emission - Mobile MRI Rental
 
Short T1 Inversion RecoveryInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(STIR) Also called Short Tau (t) (inversion time) Inversion Recovery. STIR is a fat suppression technique with an inversion time t = T1 ln2 where the signal of fat is zero (T1 is the spin lattice relaxation time of the component that should be suppressed). To distinguish two tissue components with this technique, the T1 values must be different. Fluid Attenuation Inversion Recovery (FLAIR) is a similar technique to suppress water.
Inversion recovery doubles the distance spins will recover, allowing more time for T1 differences. A 180° preparation pulse inverts the net magnetization to the negative longitudinal magnetization prior to the 90° excitation pulse. This specialized application of the inversion recovery sequence set the inversion time (t) of the sequence at 0.69 times the T1 of fat. The T1 of fat at 1.5 Tesla is approximately 250 with a null point of 170 ms while at 0.5 Tesla its 215 with a 148 ms null point. At the moment of excitation, about 120 to 170 ms after the 180° inversion pulse (depending of the magnetic field) the magnetization of the fat signal has just risen to zero from its original, negative, value and no fat signal is available to be flipped into the transverse plane.
When deciding on the optimal T1 time, factors to be considered include not only the main field strength, but also the tissue to be suppressed and the anatomy. In comparison to a conventional spin echo where tissues with a short T1 are bright due to faster recovery, fat signal is reversed or darkened. Because body fluids have both a long T1 and a long T2, it is evident that STIR offers the possibility of extremely sensitive detection of body fluid. This is of course, only true for stationary fluid such as edema, as the MRI signal of flowing fluids is governed by other factors.

See also Fat Suppression and Inversion Recovery Sequence.
 
Images, Movies, Sliders:
 Sagittal Knee MRI Images STIR  Open this link in a new window
      

 
spacer
 
• Related Searches:
    • Image Contrast Characteristics
    • Inversion
    • Imaging of the Extremities
    • Knee MRI
    • Fat Saturation
 
Further Reading:
  Basics:
Can Short Tau Inversion Recovery (STIR) Imaging Be Used as a Stand-Alone Sequence To Assess a Perianal Fistulous Tract on MRI? A Retrospective Cohort Study Comparing STIR and T1-Post Contrast Imaging
Wednesday, 17 January 2024   by www.cureus.com    
  News & More:
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
Wednesday, 25 August 2021
Short tau inversion recovery (STIR) after intravenous contrast agent administration obscures bone marrow edema-like signal on forefoot MRI
Tuesday, 13 July 2021   by www.springermedizin.de    
MRI Resources 
MRI Training Courses - Collections - Bioinformatics - Mobile MRI Rental - Musculoskeletal and Joint MRI - Spectroscopy pool
 
Stimulated Echo
 
A form of a spin echo produced by three pulse RF sequences, consisting of two RF pulses following an initial exciting RF pulse. The stimulated echo appears at a time delay after the third pulse equal to the interval between the first two pulses. Although classically produced with 90° pulses, any RF pulses other than an ideal 180° can produce a stimulated echo. The intensity of the echo depends in part on the T1 relaxation time because the excitation is 'stored' as longitudinal magnetization between the second and third RF pulses. For example, use of stimulated echoes with spatially selective excitation with orthogonal magnetic field gradients permits volume-selective excitation for spectroscopic localization.
mri safety guidance
Image Guidance
Artifacts may appear as a series of fine lines. A narrow bandwidth causes a wide read window, which allows the stimulated echo to be incorporated into the image data. This can be supported by increasing the received bandwidth, which would narrow the read window, thus not incorporating the extraneous echo. Another help would be to change the first echo time, which may change the spacing of the stimulated echoes to outside that of the read window for the second echo.
spacer

• View the DATABASE results for 'Stimulated Echo' (8).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
MRI Resources 
Developers - Artifacts - Jobs - Liver Imaging - Anatomy - Implant and Prosthesis
 
Coherent Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.
spacer

• View the DATABASE results for 'Coherent Gradient Echo' (6).Open this link in a new window

MRI Resources 
Contrast Agents - Most Wanted - Shielding - Breast Implant - - Supplies
 
Driven EquilibriumInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
In fast imaging sequences driven equilibrium sensitizes the sequence to variations in T2. This MRI technique turns transverse magnetization Mxy to the longitudinal axis using a pulse rather than waiting for T1 relaxation.
The first two pulses form a spin echo and, at the peak of the echo, a second 90° pulse returns the magnetization to the z-axis in preparation for a fresh sequence. In the absence of T2 relaxation, then all the magnetization can be returned to the z-axis. Otherwise, T2 signal loss during the sequence will reduce the final z-magnetization.
The advantage of this sequence type is, that both longitudinal and also transverse magnetization are back to equilibrium in a shorter amount of time. Therefore, contrast and signal can be increased while using a shorter TR. This pulse type can be applied to other sequences like FSE, GE or IR.

Sequences with driven equilibrium:
Driven Equilibrium Fast Gradient Recalled acquisition in the steady state - DE FGR,
Driven Equilibrium Fourier Transformation - DEFT,
Driven Equilibrium magnetization preparation - DE prep,
Driven Equilibrium Fast Spin Echo - DE FSE.
 
Images, Movies, Sliders:
 MRI of the Skull Base  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Driven Equilibrium' (8).Open this link in a new window

 
Further Reading:
  Basics:
3D Turbo Spin-Echo Sequence with Motion-Sensitized Driven-Equilibrium Preparation for Detection of Brain Metastases on 3T MR Imaging
Saturday, 3 December 2011   by www.ajnr.org    
  News & More:
Advances in high-field MR imaging of the spine
Wednesday, 5 August 2009   by www.appliedradiology.com    
Comparison of New Methods for Magnetic Resonance Imaging of Articular Cartilage(.pdf)
2002
MRI Resources 
NMR - Brain MRI - Mobile MRI Rental - MRI Technician and Technologist Career - Pathology - Mass Spectrometry
 
Lattice
 
In MRI, the magnetic and thermal environment through that nuclei exchange energy in longitudinal (T1) relaxation.
spacer

• View the DATABASE results for 'Lattice' (12).Open this link in a new window

 
Further Reading:
  Basics:
Measuring T1 and T2 Relaxation - Introductory NMR & MRI from Magritek
   by www.azom.com    
MRI Resources 
MRI Accidents - Sequences - Supplies - Health - Lung Imaging - Pacemaker
 
previous      16 - 20 (of 21)     next
Result Pages : [1]  [2]  [3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 25 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]