Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Gradient' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gradient' found in 59 terms [] and 252 definitions []
previous     76 - 80 (of 311)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12]  [13 14 15 16 17 18 19 20 ... ]
Searchterm 'Gradient' was also found in the following services: 
spacer
News  (6)  Resources  (7)  Forum  (35)  
 
Flow CompensationInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.
 
Flow compensation is based on the principle of even echo rephasing and a function of specific pulse sequences, wherein the application of strategic gradient pulses can compensate for the objectionable spin phase effects of flow motion. Gradient moment nulling of the first order of flow is another adjustment for the reduction of flow artifacts.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Strategic gradient pulses are integrated in special sequences (e.g. CRISP, Complex Rephasing Integrated with Surface Probes) and for the most sequences flow compensation is an optional parameter.
spacer
 
• Related Searches:
    • Cardiac Motion Artifact
    • Cerebro Spinal Fluid Pulsation Artifact
    • Motion Artifact
    • Gradient Moment Nulling
    • Gradient Motion Rephasing
 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Flow comp off: An easy technique to confirm CSF flow within syrinx and aqueduct
Wednesday, 2 January 2013   by medind.nic.in    
Searchterm 'Gradient' was also found in the following services: 
spacer
Radiology  (1) Open this link in a new windowUltrasound  (3) Open this link in a new window
Magnetic ForcesMRI Resource Directory:
 - MRI Accidents -
 
Forces can result from the interaction of magnetic fields. Pulsed magnetic field gradients can interact with the main magnetic field during the MRI scan, to produce acoustic noise through the gradient coil.
Magnetic fields attract ferromagnetic objects with forces, which can be a lethal danger if one is hit by an unrestrained object in flight. One could also be trapped between the magnet and a large unrestrained ferromagnetic object or the object could damage the MRI machine.
Access control and personnel awareness are the best preventions of such accidents. The attraction mechanism for ferromagnetic objects is that the magnetic field magnetizes the iron. This induced magnetization reacts with the gradient of the magnetic field to produce an attraction toward the strongest area of the field. The details of this interaction are very dependent on the shape and composition of the attracted object. There is a very rapid increase of force as one approaches a magnet. There is also a torque or twisting force on objects, e.g. a long cylinder (such as a pen or an intracranial aneurysm clip) will tend to align along the magnet's field lines. The torque increases with field strength while the attraction increases with field gradient.
Depending on the magnetic saturation of the object, attraction is roughly proportional to object mass. Motion of conducting objects in magnetic fields can induce eddy currents that can have the effect of opposing the motion.

See also Duty Cycle.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
spacer

• View the DATABASE results for 'Magnetic Forces' (4).Open this link in a new window

 
Further Reading:
  Basics:
How strong are magnets?
   by my.execpc.com    
Magnetic Field of the Strongest Magnet
2003   by hypertextbook.com    
  News & More:
Imaging chain faces regulators after inmate, guard get stuck to MRI machine
Friday, 1 December 2023   by healthimaging.com    
Measuring magnetic force field distributions in microfluidic devices: Experimental and numerical approaches
Saturday, 2 December 2023   by analyticalsciencejournals.onlinelibrary.wiley.com    
Two stuck to MRI machine for 4 hrs
Tuesday, 11 November 2014   by www.mumbaimirror.com    
New imaging project for new applications in cancer diagnostics
Monday, 27 March 2017   by www.news-medical.net    
MRI Resources 
Calculation - Contrast Agents - Safety Products - Open Directory Project - Contrast Enhanced MRI - Blood Flow Imaging
 
Phase Encoding
 
The process of locating a MR signal by altering the phase of spins in one dimension with a pulsed magnetic field gradient along that dimension prior to the acquisition of the signal.
If a gradient field is briefly switched on and then off again at the beginning of the pulse sequence right after the radio frequency pulse, the magnetization of the external voxels will either precess faster or slower relative to those of the central voxels.
During readout of the signal, the phase of the xy-magnetization vector in different columns will thus systematically differ. When the x- or y- component of the signal is plotted as a function of the phase encoding step number n and thus of time n TR, it varies sinusoidally, fast at the left and right edges and slow at the center of the image. Voxels at the image edges along the phase encoding direction are thus characterized by a higher 'frequency' of rotation of their magnetization vectors than those towards the center.
As each signal component has experienced a different phase encoding gradient pulse, its exact spatial reconstruction can be specifically and precisely located by the Fourier transformation analysis. Spatial resolution is directly related to the number of phase encoding levels (gradients) used. The phase encoding direction can be chosen, e.g. whenever oblique MR images are acquired or when exchanging frequency and phase encoding directions to control wrap around artifacts.
spacer

• View the DATABASE results for 'Phase Encoding' (73).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
Searchterm 'Gradient' was also found in the following services: 
spacer
News  (6)  Resources  (7)  Forum  (35)  
 
Rotating Frame Zeugmatography
 
Technique of MR imaging that uses a gradient of the RF excitation field (to give a corresponding variation of the flip angle along the gradient as a means of encoding the spatial location of spins in the direction of the RF field gradient) in conjunction with a static magnetic field gradient (to give spatial encoding in an orthogonal direction). It can be considered to be a form of Fourier transformation imaging.
spacer
Searchterm 'Gradient' was also found in the following services: 
spacer
Radiology  (1) Open this link in a new windowUltrasound  (3) Open this link in a new window
Slew RateForum -
related threads
 
The gradient slew rate is the speed rate of ascent or descent of a gradient from zero to its maximum amplitude, either positive or negative. Which is the amplitude divided by the rise time in msec. Measured in mT/m/msec or T/m/sec. The shorter the rise time, the faster the gradients and therefore echo spacing. Gradients with a shorter echo spacing will have a better resolution and more slices per TR.
spacer

• View the DATABASE results for 'Slew Rate' (8).Open this link in a new window


• View the NEWS results for 'Slew Rate' (1).Open this link in a new window.
MRI Resources 
Most Wanted - Fluorescence - Devices - MRI Technician and Technologist Jobs - Universities - Pediatric and Fetal MRI
 
previous      76 - 80 (of 311)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12]  [13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 28 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]