Magnetic Resonance - Technology Information Portal Welcome to MRI Technology••
Info
  Sheets


Out-
      side
 



 
 'Gradient Recalled Echo Sequence' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gradient Recalled Echo Sequence' found in 1 term [] and 6 definitions [], (+ 6 Boolean[] results
1 - 5 (of 13)     next
Result Pages : [1]  [2]  [3]
MRI Resources 
MRI Physics - Software - Services and Supplies - Universities - Cardiovascular Imaging - Pregnancy
 
Gradient Recalled Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The gradient recalled echo MRI sequence generates gradient echoes as a consequence of echo refocusing. The initial slice selective RF pulse applied to the tissue is less than 90° (typically rotation angles are between 10° and 90°). Immediately after this RF pulse, the spins begin to dephase.
Instead of a refocusing 180° RF pulse, reversing the gradient polarity produces a gradient echo. A negative phase encoding gradient and a dephasing frequency encoding gradient are used simultaneous. The switch on of the frequency encoding gradient produces an echo caused by refocusing of the dephasing, which is caused by the dephasing gradient.
TR and flip angle together control the T1, and TE control T2* weighting.
spacer
 
• Share the entry 'Gradient Recalled Echo Sequence':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Frequency Encoding
    • Refocusing
    • Dephasing
    • Slice Selection
    • Refocused Gradient Echo Sequence
 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
MRI Resources 
Coils - Spectroscopy - MRI Reimbursement - Examinations - Databases - Homepages
 
Driven Equilibrium Fast Gradient Recalled Acquisition in the Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DE FGR) A gradient echo sequence using a pulse, which sensitizes the sequence to variations in T2, rather than waiting for T1 relaxation.
See Driven Equilibrium, Gradient Recalled Echo Sequence and Steady State Free Precession.
spacer
MRI Resources 
Veterinary MRI - Developers - Examinations - Databases - Calculation - MRA
 
Fast Gradient Recalled EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(FGRE) The fast gradient recalled echo sequence belong to the refocused gradient echo sequences.
See Gradient Echo Sequence.
spacer
MRI Resources 
Patient Information - Contrast Agents - MRI Technician and Technologist Career - Spectroscopy - Distributors - Blood Flow Imaging
 
Field Echo with Echo Time set for Water and Fat Signals in PhaseInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(FESUM) See Gradient Recalled Echo Sequence and In Phase Image.
spacer
MRI Resources 
IR - Pacemaker - Shoulder MRI - PACS - MR Myelography - Nerve Stimulator
 
Gradient Echo SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Gradient Echo Sequence Timing Diagram (GRE - sequence) A gradient echo is generated by using a pair of bipolar gradient pulses. In the pulse sequence timing diagram, the basic gradient echo sequence is illustrated. There is no refocusing 180° pulse and the data are sampled during a gradient echo, which is achieved by dephasing the spins with a negatively pulsed gradient before they are rephased by an opposite gradient with opposite polarity to generate the echo.
See also the Pulse Sequence Timing Diagram. There you will find a description of the components.
The excitation pulse is termed the alpha pulse a. It tilts the magnetization by a flip angle a, which is typically between 0° and 90°. With a small flip angle there is a reduction in the value of transverse magnetization that will affect subsequent RF pulses. The flip angle can also be slowly increased during data acquisition (variable flip angle: tilt optimized nonsaturation excitation). The data are not acquired in a steady state, where z-magnetization recovery and destruction by ad-pulses are balanced. However, the z-magnetization is used up by tilting a little more of the remaining z-magnetization into the xy-plane for each acquired imaging line.
Gradient echo imaging is typically accomplished by examining the FID, whereas the read gradient is turned on for localization of the signal in the readout direction. T2* is the characteristic decay time constant associated with the FID. The contrast and signal generated by a gradient echo depend on the size of the longitudinal magnetization and the flip angle. When a = 90° the sequence is identical to the so-called partial saturation or saturation recovery pulse sequence. In standard GRE imaging, this basic pulse sequence is repeated as many times as image lines have to be acquired. Additional gradients or radio frequency pulses are introduced with the aim to spoil to refocus the xy-magnetization at the moment when the spin system is subject to the next a pulse.
As a result of the short repetition time, the z-magnetization cannot fully recover and after a few initial a pulses there is an equilibrium established between z-magnetization recovery and z-magnetization reduction due to the a pulses.
Gradient echoes have a lower SAR, are more sensitive to field inhomogeneities and have a reduced crosstalk, so that a small or no slice gap can be used. In or out of phase imaging depending on the selected TE (and field strength of the magnet) is possible. As the flip angle is decreased, T1 weighting can be maintained by reducing the TR. T2* weighting can be minimized by keeping the TE as short as possible, but pure T2 weighting is not possible. By using a reduced flip angle, some of the magnetization value remains longitudinal (less time needed to achieve full recovery) and for a certain T1 and TR, there exist one flip angle that will give the most signal, known as the "Ernst angle".
Contrast values:
PD weighted: Small flip angle (no T1), long TR (no T1) and short TE (no T2*)
T1 weighted: Large flip angle (70°), short TR (less than 50ms) and short TE
T2* weighted: Small flip angle, some longer TR (100 ms) and long TE (20 ms)

Classification of GRE sequences can be made into four categories:
T1 weighted or incoherent/(RF or gradient) spoiled GRE sequences
T1/T2* weighted or coherent//refocused GRE sequences
T2 weighted contrast enhanced GRE sequences
ultrafast GRE sequences
See also Gradient Recalled Echo Sequence, Spoiled Gradient Echo Sequence, Refocused Gradient Echo Sequence, Ultrafast Gradient Echo Sequence.
 
Images, Movies, Sliders:
 MRI Liver In Phase  Open this link in a new window
    
 MRI Liver Out Of Phase  Open this link in a new window
    
 MVP Parasternal  Open this link in a new window
 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Gradient Echo Sequence' (70).Open this link in a new window

 
Further Reading:
  Basics:
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
Imaging strategies for uncooperative patients
Sunday, 1 January 2017   by posterng.netkey.at    
  News & More:
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
MRI Resources 
Homepages - Patient Information - Safety pool - Jobs - Hospitals - Mobile MRI
 
     1 - 5 (of 13)     next
Result Pages : [1]  [2]  [3]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?  



The impact of TTIP/TPP on the MRI scanner market will bring :
more variety 
better scanners 
more risk 
less regulation 
cheaper scanners 
Lost in Translation 
no change at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • US-TIP • 
Copyright © 2003 - 2018 SoftWays. All rights reserved. [ 20 January 2019]
Terms of Use | Privacy Policy | Advertising
 [last update: 2018-03-08 05:11:00]