Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Field Strength' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Field Strength' found in 1 term [] and 135 definitions []
previous     51 - 55 (of 136)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Field Strength' was also found in the following services: 
spacer
News  (13)  Resources  (3)  Forum  (7)  
 
Gradient Amplifier
 
In MRI systems, the gradient amplifier increases the energy of the signal before it reaches the gradient coils, in a way, that the field strength is intense enough to produce the variations in the main magnetic field for localization of the later received signal. Three gradient coils normally require three gradient amplifiers. As all amplifiers, gradient amplifiers produce heat, which requires cooling.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
spacer
 
• Related Searches:
    • dB/dt
    • Slew Rate
    • Amplifier
    • Gradient Strength
    • Gradient Coil
Searchterm 'Field Strength' was also found in the following services: 
spacer
Radiology  (5) Open this link in a new windowUltrasound  (2) Open this link in a new window
Gradient Echo SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Gradient Echo Sequence Timing Diagram (GRE - sequence) A gradient echo is generated by using a pair of bipolar gradient pulses. In the pulse sequence timing diagram, the basic gradient echo sequence is illustrated. There is no refocusing 180° pulse and the data are sampled during a gradient echo, which is achieved by dephasing the spins with a negatively pulsed gradient before they are rephased by an opposite gradient with opposite polarity to generate the echo.
See also the Pulse Sequence Timing Diagram. There you will find a description of the components.
The excitation pulse is termed the alpha pulse α. It tilts the magnetization by a flip angle α, which is typically between 0° and 90°. With a small flip angle there is a reduction in the value of transverse magnetization that will affect subsequent RF pulses. The flip angle can also be slowly increased during data acquisition (variable flip angle: tilt optimized nonsaturation excitation). The data are not acquired in a steady state, where z-magnetization recovery and destruction by ad-pulses are balanced. However, the z-magnetization is used up by tilting a little more of the remaining z-magnetization into the xy-plane for each acquired imaging line.
Gradient echo imaging is typically accomplished by examining the FID, whereas the read gradient is turned on for localization of the signal in the readout direction. T2* is the characteristic decay time constant associated with the FID. The contrast and signal generated by a gradient echo depend on the size of the longitudinal magnetization and the flip angle. When α = 90° the sequence is identical to the so-called partial saturation or saturation recovery pulse sequence. In standard GRE imaging, this basic pulse sequence is repeated as many times as image lines have to be acquired. Additional gradients or radio frequency pulses are introduced with the aim to spoil to refocus the xy-magnetization at the moment when the spin system is subject to the next α pulse.
As a result of the short repetition time, the z-magnetization cannot fully recover and after a few initial α pulses there is an equilibrium established between z-magnetization recovery and z-magnetization reduction due to the α pulses.
Gradient echoes have a lower SAR, are more sensitive to field inhomogeneities and have a reduced crosstalk, so that a small or no slice gap can be used. In or out of phase imaging depending on the selected TE (and field strength of the magnet) is possible. As the flip angle is decreased, T1 weighting can be maintained by reducing the TR. T2* weighting can be minimized by keeping the TE as short as possible, but pure T2 weighting is not possible. By using a reduced flip angle, some of the magnetization value remains longitudinal (less time needed to achieve full recovery) and for a certain T1 and TR, there exist one flip angle that will give the most signal, known as the "Ernst angle".
Contrast values:
PD weighted: Small flip angle (no T1), long TR (no T1) and short TE (no T2*)
T1 weighted: Large flip angle (70°), short TR (less than 50ms) and short TE
T2* weighted: Small flip angle, some longer TR (100 ms) and long TE (20 ms)

Classification of GRE sequences can be made into four categories:
See also Gradient Recalled Echo Sequence, Spoiled Gradient Echo Sequence, Refocused Gradient Echo Sequence, Ultrafast Gradient Echo Sequence.
 
Images, Movies, Sliders:
 MRI Liver In Phase  Open this link in a new window
    
 MRI Liver Out Of Phase  Open this link in a new window
    
 MVP Parasternal  Open this link in a new window
 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Gradient Echo Sequence' (70).Open this link in a new window

 
Further Reading:
  Basics:
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
  News & More:
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
MRI Resources 
Musculoskeletal and Joint MRI - Case Studies - NMR - MRI Technician and Technologist Jobs - Hospitals - Mobile MRI
 
Gyromagnetic Ratio
 
A constant for any given nucleus that relates the nuclear MR frequency and the strength of the external magnetic field.
Definition: The ratio of the magnetic moment (field strength = T) to the angular momentum (frequency = ν) of a particle.
The gyromagnetic effect happens if a magnetic substance is subjected to a magnetic field. Upon a change in direction of the magnetic field, the magnetization of the substance must change. In order for this to happen, the atoms must change their angular momentum. Since there are no external torques acting on the system, the total angular momentum must remain constant. This mass rotation may be measured. The gyromagnetic ratio is different for each nucleus of different atoms. The value of the gyromagnetic ratio for hydrogen (1H) is 4,258 (Hz/G) (42.58 MHz/T).
spacer

• View the DATABASE results for 'Gyromagnetic Ratio' (4).Open this link in a new window

 
Further Reading:
  Basics:
Electron and proton gyromagnetic ratios
   by www.phys.au.dk    
Searchterm 'Field Strength' was also found in the following services: 
spacer
News  (13)  Resources  (3)  Forum  (7)  
 
HomogeneityForum -
related threads
 
The uniformity of the main magnetic field measured in ppm. In a defined volume it is the difference between maximum and minimum field strength and this multiplied by 1 million.
In MR, the homogeneity of the static magnetic field is an important criterion of the quality of the magnet. Homogeneity requirements for MR imaging are generally lower than the homogeneity requirements for NMR spectroscopy, but for most imaging techniques must be maintained over a large region.
spacer

• View the DATABASE results for 'Homogeneity' (48).Open this link in a new window

 
Further Reading:
  Basics:
MRI Quality Control Program
   by www.simplyphysics.com    
Searchterm 'Field Strength' was also found in the following services: 
spacer
Radiology  (5) Open this link in a new windowUltrasound  (2) Open this link in a new window
Image Contrast Characteristics
 
Variations in the value of TR and TE have an important effect on the control of image contrast characteristics.
Short values of TR (less than e.g. 1000 ms) and TE (less than e.g. 25 ms) are common in images exhibiting T1 contrast.
Long values of TR (greater than e.g. 1500 ms) and TE (greater than e.g.60 ms) are common in images exhibiting T2 contrast.
Middle TR values (e.g. from 1000 to 1500 ms) and middle TE values (e.g. from 25 to 60 ms) are common for density weighted contrast.
The values are depending on the field strength. TR is also a major factor in total scan time.
 
Images, Movies, Sliders:
 Knee MRI Coronal Pd Spir 001  Open this link in a new window
    
 Brain MRI Transversal T1 002  Open this link in a new window
    
 MRI Pancreas T2  Open this link in a new window
    
 Knee MRI Sagittal T1 004  Open this link in a new window
 Knee MRI Transverse 001  Open this link in a new window
 
Radiology-tip.comradContrast,  Low Contrast Detectability
spacer
Medical-Ultrasound-Imaging.comSonographic Features,  Echogenicity
spacer

• View the DATABASE results for 'Image Contrast Characteristics' (6).Open this link in a new window

 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
MRI Resources 
Mass Spectrometry - MR Myelography - NMR - Blood Flow Imaging - Coils - Libraries
 
previous      51 - 55 (of 136)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]