Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Dephasing' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Dephasing' found in 2 terms [] and 24 definitions []
previous     11 - 15 (of 26)     next
Result Pages : [1]  [2 3 4 5 6]
Searchterm 'Dephasing' was also found in the following service: 
spacer
Forum  (4)  
 
Gradient Echo Multi SliceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(GEMS) This pulse sequence uses a changeable flip angle instead of a 90° pulse and a gradient instead of a RF pulse to rephase the FID.
T2*, T1 weighted and proton density images can be acquired. The flip angle in combination with the TR determines the T1 weighting and the TE controls the amount of dephasing. To minimize T2* the echo time should be short.

See also Gradient Echo Sequence.
spacer
MRI Resources 
Mobile MRI - Case Studies - Service and Support - Non-English - Databases - MR Guided Interventions
 
Gradient Echo SequenceForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Gradient Echo Sequence Timing Diagram (GRE - sequence) A gradient echo is generated by using a pair of bipolar gradient pulses. In the pulse sequence timing diagram, the basic gradient echo sequence is illustrated. There is no refocusing 180° pulse and the data are sampled during a gradient echo, which is achieved by dephasing the spins with a negatively pulsed gradient before they are rephased by an opposite gradient with opposite polarity to generate the echo.
See also the Pulse Sequence Timing Diagram. There you will find a description of the components.
The excitation pulse is termed the alpha pulse α. It tilts the magnetization by a flip angle α, which is typically between 0° and 90°. With a small flip angle there is a reduction in the value of transverse magnetization that will affect subsequent RF pulses. The flip angle can also be slowly increased during data acquisition (variable flip angle: tilt optimized nonsaturation excitation). The data are not acquired in a steady state, where z-magnetization recovery and destruction by ad-pulses are balanced. However, the z-magnetization is used up by tilting a little more of the remaining z-magnetization into the xy-plane for each acquired imaging line.
Gradient echo imaging is typically accomplished by examining the FID, whereas the read gradient is turned on for localization of the signal in the readout direction. T2* is the characteristic decay time constant associated with the FID. The contrast and signal generated by a gradient echo depend on the size of the longitudinal magnetization and the flip angle. When α = 90° the sequence is identical to the so-called partial saturation or saturation recovery pulse sequence. In standard GRE imaging, this basic pulse sequence is repeated as many times as image lines have to be acquired. Additional gradients or radio frequency pulses are introduced with the aim to spoil to refocus the xy-magnetization at the moment when the spin system is subject to the next α pulse.
As a result of the short repetition time, the z-magnetization cannot fully recover and after a few initial α pulses there is an equilibrium established between z-magnetization recovery and z-magnetization reduction due to the α pulses.
Gradient echoes have a lower SAR, are more sensitive to field inhomogeneities and have a reduced crosstalk, so that a small or no slice gap can be used. In or out of phase imaging depending on the selected TE (and field strength of the magnet) is possible. As the flip angle is decreased, T1 weighting can be maintained by reducing the TR. T2* weighting can be minimized by keeping the TE as short as possible, but pure T2 weighting is not possible. By using a reduced flip angle, some of the magnetization value remains longitudinal (less time needed to achieve full recovery) and for a certain T1 and TR, there exist one flip angle that will give the most signal, known as the "Ernst angle".
Contrast values:
PD weighted: Small flip angle (no T1), long TR (no T1) and short TE (no T2*)
T1 weighted: Large flip angle (70°), short TR (less than 50ms) and short TE
T2* weighted: Small flip angle, some longer TR (100 ms) and long TE (20 ms)

Classification of GRE sequences can be made into four categories:
See also Gradient Recalled Echo Sequence, Spoiled Gradient Echo Sequence, Refocused Gradient Echo Sequence, Ultrafast Gradient Echo Sequence.
 
Images, Movies, Sliders:
 MRI Liver In Phase  Open this link in a new window
    
 MRI Liver Out Of Phase  Open this link in a new window
    
 MVP Parasternal  Open this link in a new window
 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Gradient Echo Sequence' (70).Open this link in a new window

 
Further Reading:
  Basics:
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
  News & More:
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
MRI Resources 
Devices - Spectroscopy pool - Patient Information - Fluorescence - Pregnancy - Nerve Stimulator
 
Intravoxel Incoherent Motion
 
(IVIM) Spins moving in fluids with different velocities and possibly in different directions. This is being found to a small degree in all tissues as a result of capillary perfusion or diffusion. Important velocity changes occur as one moves from the vessel wall towards the center of the vessel. Hence, spins (to a variable degree) have different velocities within a single imaging voxel.
This effect can be measured using special pulse sequences such as in diffusion imaging or diffusion weighed imaging. When the velocity differences are marked, as occurs in larger blood vessels, effects due to IVIM are visible in standard MR images and give rise to flow related dephasing. The effects are more visible when longer echo times are used.
spacer

• View the DATABASE results for 'Intravoxel Incoherent Motion' (3).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
Searchterm 'Dephasing' was also found in the following service: 
spacer
Forum  (4)  
 
Jet Effect
 
Spin dephasing for complex flow patterns like turbulence. This effect must be taken into account when evaluating the extent of vascular stenosis. The degree of the signal loss depends on the flow model and pulse sequence used.
spacer
MRI Resources 
Collections - Societies - Open Directory Project - Devices - MR Myelography - Used and Refurbished MRI Equipment
 
Partial Echo
 
(PE) The partial echo technique (also called fractional echo) is used to shorten the minimum echo time. By the acquisition of only a part of k-space data this technique benefits (like all partial Fourier techniques) from the complex conjugate symmetry between the k-space halves (this is called Hermitian symmetry).
The dephasing gradient in the frequency direction is reduced, and the duration of the readout gradient and the data acquisition window are shortened. Partial echo gives a better SNR at a given TE when a smaller FOV or thinner slices are selected, allows a longer sampling time, and a larger water fat shift (WFS, see also bandwidth) due to a lower gradient amplitude. The resolution is not affected. This is often used in gradient echo sequences (e.g. FLASH, Contrast Enhanced Magnetic Resonance Angiography) to reduce the echo time and yields a lower gradient moment. The disadvantage of using a partial echo can be a lower SNR, although this may be partly offset by the reduced echo time.
Also called Fractional Echo, Read Conjugate Symmetry, Single Side View.

See also Partial Fourier Technique and acronyms for 'partial echo' from different manufacturers.
spacer

• View the DATABASE results for 'Partial Echo' (4).Open this link in a new window

 
Further Reading:
  Basics:
Method and apparatus for subterranean formation flow imaging
   by www.google.com    
MRI Resources 
Developers - MRI Accidents - Case Studies - Quality Advice - DICOM - MRI Physics
 
previous      11 - 15 (of 26)     next
Result Pages : [1]  [2 3 4 5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 19 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]