Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Cryogen' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Cryogen' found in 2 terms [] and 59 definitions []
previous     46 - 50 (of 61)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13]
Searchterm 'Cryogen' was also found in the following services: 
spacer
News  (7)  Resources  (3)  Forum  (3)  
 
Panorama 1.0T™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/main/products/mri/products/panoramafamily/panorama1.0t_rt/features/ From Philips Medical Systems;
this active shielded member of the Panorama product line combines the advantages of one 1.0 T system's with the possibilities of an open MRI system. The open design helps ease anxiety for claustrophobic patients and increased patient comfort whereby the field strength provides spectacular image quality and fast patient throughput.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Vertical Field open MRI post design
Vertically opposed solenoids, head, head-neck, extremity, neck, body/spine M-XL, shoulder, bilateral breast, wrist, TMJ, flex XS-S-M-L-XL-XXL
SYNCHRONIZATION
ECG/peripheral: Optional/yes, respiratory gating
PULSE SEQUENCES
SE, FE, IR, STIR, FFE, DEFFE, DESE, TSE, DETSE, Single shot SE, DRIVE, Balanced FFE, MRCP, FLAIR, Turbo FLAIR, IR-TSE, T1-STIR TSE, T2-STIR TSE, Diffusion Imaging, 3D SE, 3D FFE, Contrast Perfusion Analysis, MTC;; Angiography: CE-ANGIO, MRA 2D, 3D TOF
IMAGING MODES
Single, multislice, volume study, dynamic, SIMEX, multi chunk 3D, multiple stacks
TR
Min. 4.6 msec
TE
Min. 2.3 msec
SINGLE/MULTI SLICE
50 slices/sec
0.4 cm - 42 cm
1280 X 1024
MEASURING MATRIX
Up to 512 x 512
PIXEL INTENSITY
256 gray scale
Open x 47 cm x infinite (side-first patient entry)
MAGNET WEIGHT
H*W*D
POWER REQUIREMENTS
400/480 V
COOLING SYSTEM TYPE
Liquid helium
STRENGTH
20 mT/m
5-GAUSS FRINGE FIELD
Passive/active
spacer
MRI Resources 
Colonography - Contrast Agents - Image Quality - Research Labs - Education - Jobs pool
 
Quenching
 
A quench is the rapid helium evaporation and the loss of superconductivity of the current-carrying coil that may occur unexpectedly, or from pressing the emergency button in a superconducting magnet. As the superconductive magnet becomes resistive, heat will be released that can result in boiling of liquid helium in the cryostat. This may present a hazard if not properly planned for.
The evaporated coolant requires emergency venting systems to protect patients and operators. Quenching can cause total magnet failure and cannot be stopped. MRI systems are designed such that all of the escaping cryogenic gas is directed out of the building (quench pipe through the roof or the wall). In the event of a burst of the tank (possible in the case of an accident) or a blockage of the pipes, the helium gas will be forced into the scanner room, giving rise to a large white cloud of chilled gas. Under such circumstances it is essential that the scanner room is evacuated, also caused by the displacement of oxygen, which under extreme conditions could lead to asphyxiation. The force of quenching can be strong enough to destroy the walls of the scanner room or the MRI equipment.
spacer

• View the DATABASE results for 'Quenching' (5).Open this link in a new window

MRI Resources 
Shielding - Used and Refurbished MRI Equipment - Stent - General - Crystallography - Claustrophobia
 
Resistive Magnet
 
A type of magnet that utilizes the principles of electromagnetism to generate the magnetic field. Typically large current values and significant cooling of the magnet coils is required. The resistive magnet does not require cryogens, but needs a constant power supply to maintain a homogenous magnetic field, and can be quite expensive to maintain.
Resistive magnets fall into two general categories - iron-core and air-core.
Iron-core electromagnets provide the advantages of a vertically oriented magnetic field, and a limited fringe field with little, if any, missile effects due to the closed iron-flux return path.
Air-core electromagnets exhibit horizontally oriented fields, which have large fringe fields (unless magnetically shielded) and are prone to missile effects. Resistive magnets are typically limited to maximum field strengths of approximately 0.6T.
spacer

• View the DATABASE results for 'Resistive Magnet' (3).Open this link in a new window

Searchterm 'Cryogen' was also found in the following services: 
spacer
News  (7)  Resources  (3)  Forum  (3)  
 
Signa HDe 1.5T™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
www.vitalcom.com/euen/mri/products/signa-hde-15t/index.html From GE Healthcare;
GE Healthcare has added the Signa HDe 1.5T™, a compact MRI device at an affordable price to its family of MRI products. It has a single electronic cabinet that can be positioned inside the scanner room rather than in a separate equipment room. The Signa HDe 1.5T can be installed in the same physical location as 0.5T MRI systems with minimal construction costs. According to GE, the installation has been simplified to last only 7 days and has a 30 percent smaller footprint than a typical 1.5T system.
The 1.5T Signa™ HDe MRI system is substantially equivalent to the currently marketed GE 1.5T machines. The data acquisition system supports 1, 4, 8 independent receive channels and multiple independent coil elements per channel during a single acquisition series. The gradient specifications of HDe are lower than other GE Signa 1.5T MRI systems, but it can support clinical applications in cardiac and spectroscopy imaging.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Compact short bore
Head and body coil standard; all other coils optional e.g., abdomen, spine, breast, knee, shoulder, cardiac imaging coils
Possible
SYNCHRONIZATION
ECG/peripheral, respiratory gating, (SmartPrep, SmartStep)
PULSE SEQUENCES
Standard: SE, IR, 2D/3D GRE and SPGR, Angiography: 2D/3D TOF, 2D/3D Phase Contrast; 2D/3D FSE, 2D/3D FGRE and FSPGR, SSFP, FLAIR, EPI
IMAGING MODES
2D single slice, multi slice, and 3D volume images, multi slab, cine
1 cm to 48 cm continuous
2D 0.7 mm to 20 mm; 3D 0.1 mm to 5 mm
1028 x 1024
MEASURING MATRIX
128x512 steps 32 phase encode
PIXEL INTENSITY
256 gray levels
POWER REQUIREMENTS
480 or 380/415
COOLING SYSTEM TYPE
Closed-loop water-cooled gradient
CRYOGEN USE, L/hr
less than 0.03 L/hr liquid helium
spacer

• View the NEWS results for 'Signa HDe 1.5T™' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Signa HDe 1.5T
   by www.gehealthcare.com/    
MRI Resources 
Directories - Education - Chemistry - Resources - Collections - Education pool
 
Signa HDx 1.5T™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
www.vitalcom.com/euen/mri/products/signa-hdx-15t/index.html From GE Healthcare;
The GE Signa HDx MRI system is a whole body magnetic resonance scanner designed to support high resolution, high signal to noise ratio, and short scan times.
The 1.5T Signa HDx MR Systems is a modification of the currently marketed GE 1.5T machines, with the main difference being the change to the receive chain architecture that includes a thirty two independent receive channels, and allows for future expansion in 16 channel increments. The overall system has been improved with a simplified user interface and a single 23" liquid crystal display, improved multi channel surface coil connectivity, and an improved image reconstruction architecture known as the Volume Recon Engine (VRE).
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Compact short bore
Possible
SYNCHRONIZATION
ECG/peripheral, respiratory gating, (SmartPrep, SmartStep)
PULSE SEQUENCES
Standard: SE, IR, 2D/3D GRE and SPGR, Angiography: 2D/3D TOF, 2D/3D Phase Contrast; 2D/3D FSE, 2D/3D FGRE and FSPGR, SSFP, FLAIR, EPI, optional: 2D/3D Fiesta, FGRET, Spiral, Tensor,
IMAGING MODES
2D single slice, multi slice, and 3D volume images, multi slab, cine
1 cm to 48 cm continuous
2D 0.7 mm to 20 mm; 3D 0.1 mm to 5 mm
1028 x 1024
MEASURING MATRIX
128x512 steps 32 phase encode
PIXEL INTENSITY
256 gray levels
POWER REQUIREMENTS
480 or 380/415
COOLING SYSTEM TYPE
Closed-loop water-cooled gradient
CRYOGEN USE, L/hr
less than 0.03 L/hr liquid helium
spacer
MRI Resources 
Online Books - MRI Training Courses - Crystallography - Shielding - PACS - Breast MRI
 
previous      46 - 50 (of 61)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]