Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Cardiac Axes' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Cardiac Axes' found in 1 term [] and 6 definitions []
previous     6 - 7 (of 7)     
Result Pages : [1]  [2]
MRI Resources 
MRI Accidents - Examinations - Stimulator pool - Contrast Agents - Lung Imaging - IR
 
Myocardial Late Enhancement
 
(LE) Myocardial late enhancement in contrast enhanced cardiac MRI has the ability to precisely delineate myocardial scar associated with coronary artery disease. Viability imaging implies evaluating infarcted myocardium to see whether there is enough viable tissue available for revascularization. The reversal of myocardial dysfunction is particularly relevant in patients with depressed ventricular function because revascularization improves long-term survival. In comparison to SPECT and PET imaging, myocardial late enhancement MRI demonstrates areas of delayed enhancement exactly in correlation with the infarcted region.
Viability on cardiac MRI (CMR) is based on the fact that all infarcts enhance vividly 10-15 minutes after the administration of intravenous paramagnetic contrast agents. This enhancement represents the accumulation of gadolinium in the extracellular space, due to the loss of membrane integrity in the infarcted tissue. This phenomenon of delayed hyperenhancement has been proven to correlate with the actual extent of the infarct.
MRI myocardial late enhancement can quantify the size, location and transmural extent of the infarct. If the transmural extent of the infarct (region of enhancement on MRI) is less than 50% of the wall thickness, there will be improved contractility in that segment following revascularization. In areas of hypokinesia, if there is a rim of "black" or non-infarcted myocardium that is not contracting well, it indicates the presence of hibernating myocardium, which is likely to improve after revascularization of the artery supplying that particular territory.
The total duration of a myocardial late enhancement MR imaging protocol for viability is approximately 30 minutes, including scout images, first-pass images, cine images in two planes, and delayed myocardial enhancement images. In order to assess viable myocardium, the gadolinium contrast agent is injected at a dose of 0.15 to 0.2 mmol/kg. After about 10 minutes, short axis and long axis views (see cardiac axes) of the heart are obtained using an inversion prepared ECG gated gradient echo sequence. The inversion pulse is adjusted to suppress normal myocardium. Areas of nonviable myocardium retain extremely high signal intensity, black areas show normal tissue.

For Ultrasound Imaging (USI) see Myocardial Contrast Echocardiography at Medical-Ultrasound-Imaging.com.
spacer
 
• Related Searches:
    • Cardiac MRI
    • Inversion Time
    • Cardiac Axes
    • Contrast Agents
    • Perfusion Imaging
 
Further Reading:
  Basics:
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
Prediction of Myocardial Viability by MRI
1999   by circ.ahajournals.org    
Geron Demonstrates hESC-derived cardiomyocytes improve heart function after myocardial infarction
Monday, 27 August 2007   by www.brightsurf.com    
MRI Resources 
DICOM - Manufacturers - Cochlear Implant - Veterinary MRI - Intraoperative MRI - Mobile MRI Rental
 
Perfusion ImagingForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 
Radiology-tip.comradPerfusion Scintigraphy
spacer
Medical-Ultrasound-Imaging.comBolus Injection
spacer

• View the DATABASE results for 'Perfusion Imaging' (16).Open this link in a new window


• View the NEWS results for 'Perfusion Imaging' (3).Open this link in a new window.
 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
MRI Resources 
RIS - Manufacturers - Spectroscopy pool - Services and Supplies - MRI Training Courses - Anatomy
 
previous      6 - 7 (of 7)     
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 19 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]