Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Brain MRI' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Brain MRI' found in 1 term [] and 13 definitions [], (+ 14 Boolean[] results
previous     26 - 28 (of 28)     
Result Pages : [1]  [2 3]  [4 5 6]
Searchterm 'Brain MRI' was also found in the following services: 
spacer
News  (170)  Resources  (28)  Forum  (3)  
 
Magnetic Source ImagingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Functional MRI -
 
(MSI) The combination of biomagnetic field detection and MR imaging into a merged data set. Most applications of MSI involve the combined use of MRI and measurement of magnetic fields created by electric currents in the brain, so-called magnetoencephalography MEG.
MEG allows calculation of the source of the measured biomagnetic fields, and thereby localization of many regional brain functions, such as mapping of the sensorimotor, auditory and visual cortex and also localization of epileptogenic foci. The MEG coordinate system is defined by anatomical landmarks, which are easily identified also with MRI, making it possible to align the 3D MEG data with the 3D MR image data. The resulting magnetic source images show the spatial relationships between the functional area provided by MEG and the neighboring anatomy and pathology, both provided by MRI.
Cardiac applications of MSI are also being explored. The electric currents in the myocardium create extrathoracic magnetic fields and the source of these fields may be calculated by the same principles as those used in MEG. Possible cardiac applications include mapping of arrhythmogenic sites prior to ablation therapy.
spacer

• View the NEWS results for 'Magnetic Source Imaging' (2).Open this link in a new window.
 
Further Reading:
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
MRI Resources 
Corporations - Implant and Prosthesis pool - Homepages - MRI Centers - Spectroscopy pool - Health
 
Magnetization Transfer
 
(MT) Magnetization Transfer was accidentally discovered by Wolff and Balaban in 1989. Conventional MRI is based on the differences in T1, T2 and the proton density (water content and the mobility of water molecules) in tissue; it relies primarily on free (bulk) water protons. The T2 relaxation times are greater than 10 ms and detectable. The T2 relaxation times of protons associated with macromolecules are less then 1 ms and not detectable in MRI.
Magnetization Transfer Imaging (MTI) is based on the magnetization interaction (through dipolar and/or chemical exchange) between bulk water protons and macromolecular protons. By applying an off resonance radio frequency pulse to the macromolecular protons, the saturation of these protons is then transferred to the bulk water protons. The result is a decrease in signal (the net magnetization of visible protons is reduced), depending on the magnitude of MT between tissue macromolecules and bulk water. With MTI, the presence or absence of macromolecules (e.g. in membranes, brain tissue) can be seen.
The magnetization transfer ratio (MTR) is the difference in signal intensity with or without MT.

See also Magnetization Transfer Contrast.
spacer

• View the DATABASE results for 'Magnetization Transfer' (7).Open this link in a new window

 
Further Reading:
  Basics:
MICRO-STRUCTURAL QUANTITIES - DIFFUSION, MAGNETISATION DECAY, MAGNETISATION TRANSFER AND PERMEABILITY(.pdf)
   by www.dundee.ac.uk    
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
Gold-manganese nanoparticles for targeted diagnostic and imaging
Thursday, 12 November 2015   by www.nanowerk.com    
Magnetization Transfer Magnetic Resonance Imaging of Hepatic Tumors(.pdf)
   by www.nci.edu.eg    
MRI Resources 
Developers - Stent - Pediatric and Fetal MRI - Implant and Prosthesis pool - Quality Advice - Examinations
 
Magnetization Transfer Contrast
 
(MTC) This MRI method increases the contrast by removing a portion of the total signal in tissue. An off resonance radio frequency (RF) pulse saturates macromolecular protons to make them invisible (caused by their ultra-short T2* relaxation times). The MRI signal from semi-solid tissue like brain parenchyma is reduced, and the signal from a more fluid component like blood is retained.
E.g., saturation of broad spectral lines may produce decreases in intensity of lines not directly saturated, through exchange of magnetization between the corresponding states; more closely coupled states will show a greater resulting intensity change. Magnetization transfer techniques make demyelinated brain or spine lesions (as seen e.g. in multiple sclerosis) better visible on T2 weighted images as well as on gadolinium contrast enhanced T1 weighted images.
Off resonance makes use of a selection gradient during an off resonance MTC pulse. The gradient has a negative offset frequency on the arterial side of the imaging volume (caudally more off resonant and cranially less off resonant). The net effect of this type of pulse is that the arterial blood outside the imaging volume will retain more of its longitudinal magnetization, with more vascular signal when it enters the imaging volume. Off resonance MTC saturates the venous blood, leaving the arterial blood untouched.
On resonance has no effect on the free water pool but will saturate the bound water pool and is the difference in T2 between the pools. Special binomial pulses are transmitted causing the magnetization of the free protons to remain unchanged. The z-magnetization returns to its original value. The spins of the bound pool with a short T2 experience decay, resulting in a destroyed magnetization after the on resonance pulse.

See also Magnetization Transfer.
spacer

• View the DATABASE results for 'Magnetization Transfer Contrast' (5).Open this link in a new window

 
Further Reading:
  News & More:
MRI of the Human Eye Using Magnetization Transfer Contrast Enhancement
   by www.iovs.org    
Searchterm 'Brain MRI' was also found in the following services: 
spacer
News  (170)  Resources  (28)  Forum  (3)  
 
previous      26 - 28 (of 28)     
Result Pages : [1]  [2 3]  [4 5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]