Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Artifact' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Artifact' found in 62 terms [] and 104 definitions []
previous     71 - 75 (of 166)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13]  [14 15 16 17 18 19 20 ... ]
Searchterm 'Artifact' was also found in the following services: 
spacer
News  (6)  Resources  (10)  Forum  (22)  
 
Respiratory Compensation
 
Respiratory compensation reduces motion artifacts due to breathing. The approach is to reassign the echoes that are sensitive to respiratory motion in the central region of k-space. The outer lines of phase encoding normally contain the echoes where the motion from expiration is the greatest. The central portion of k-space will have encoded the echoes where inspiration and expiration are minimal. By a bellows device fixed to the abdomen, monitoring of the diaphragm excursion is possible. Respiratory compensation does not increase scan time with most systems.
An advantage of very fast sequences is the possibility of breath holding during the acquisition to eliminate motion artifacts. Breath hold is commonly used on most abdominal studies where images are acquired using gradient echo-based sequences during a brief inspiratory period (20-30 seconds). To enhance the breath holding endurance of the patient, connecting the patient to oxygen at a 1-liter flow rate via a nasal cannula has been shown to be helpful.
Also called PEAR, Respiratory Trigger, Respiratory Gating, PRIZE, FREEZE, Phase Reordering.

See also Phase Encoding Artifact Reduction, Respiratory Ordered Phase Encoding.
spacer
 
Further Reading:
  News & More:
Controlling patient's breathing makes cardiac MRI more accurate
Friday, 13 May 2016   by www.upi.com    
Searchterm 'Artifact' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (60) Open this link in a new window
Aliasing
 
If the receiving RF coil is sensitive to tissue signal arising from outside the desired FOV, this undesired signal may be incorrectly mapped to a location within the image, a phenomenon known as aliasing. This is a consequence of the acquired k-space frequencies not being sampled densely enough, whereby portions of the object outside of the desired FOV get mapped to an incorrect location inside the FOV. The sampling frequency should be at least twice the frequency being sampled. The maximum measurable frequency is therefore equal to half the sampling frequency. This is the so-called Nyquist limit. When the frequency is higher than the Nyquist limit, aliasing occurs.
A similar problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV. This signal will be mapped, or wrapped back into the image at incorrect locations, and is seen as artifact.

See also Aliasing Artifact.
spacer

• View the DATABASE results for 'Aliasing' (19).Open this link in a new window

 
Further Reading:
  News & More:
The Effects of Breathing Motion on DCE-MRI Images: Phantom Studies Simulating Respiratory Motion to Compare CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE
Tuesday, 7 February 2017   by www.kjronline.org    
MRI Resources 
Mobile MRI Rental - PACS - Stimulator pool - Knee MRI - Corporations - Education
 
Chemical Shift
 
Chemical shift depends on the nucleus and its environment and is defined as nuclear shielding / applied magnetic field. Nuclei are shielded by a small magnetic field caused by circulating electrons, termed nuclear shielding. The strength of the shield depends on the different molecular environment in that the nucleus is embedded. Nuclear shielding is the difference between the magnetic field at the nucleus and the applied magnetic field.
Chemical shift is measured in parts per million (ppm) of the resonance frequency relative to another or a standard resonance frequency.
The major part of the MR signal comes from hydrogen protons; lipid protons contribute a minor part. The chemical shift between water and fat nuclei is about 3.5 ppm (~220 Hz; 1.5T). Through this difference in resonance frequency between water and fat protons at the same location, a misregistration (dislocation) by the Fourier Transformation take place, when converting MR signals from frequency to spatial domain. This effect is called chemical shift artifact or chemical shift misregistration artifact.
spacer

• View the DATABASE results for 'Chemical Shift' (29).Open this link in a new window

 
Further Reading:
  Basics:
FUNDAMENTALS OF MRI: Part III – Forming an MR Image
   by www.e-radiography.net    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
Searchterm 'Artifact' was also found in the following services: 
spacer
News  (6)  Resources  (10)  Forum  (22)  
 
Chemical Shift Spatial OffsetInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.
 
Image artifact of apparent spatial offset of regions with different chemical shifts along the direction of the frequency encoding gradient; a similar effect may be found in the slice selection direction.

See Chemical Shift Artifact.
spacer
 
Further Reading:
  Basics:
1H MR Spectroscopy and Chemical Shift Imaging of the In Vivo Brain at 7 Tesla
Sunday, 26 November 2006   by tobias-lib.uni-tuebingen.de    
Searchterm 'Artifact' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (60) Open this link in a new window
Contrast Enhanced Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a sufficient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of in plane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
•
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
•
the possibility to perform a time resolved examination (similarly to conventional angiography);
•
no use of ionizing radiation; paramagnetic agents have a beneficial safety.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Contrast Enhanced Magnetic Resonance Angiography' (14).Open this link in a new window


• View the NEWS results for 'Contrast Enhanced Magnetic Resonance Angiography' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Contrast-Enhanced MR Angiography(.pdf)
   by ric.uthscsa.edu    
CONTRAST ENHANCED MR ANGIOGRAPHY – PRINCIPLES, APPLICATIONS, TIPS AND PITFALLS(.pdf)
  News & More:
CONTRAST-ENHANCED MRA OF THE CAROTIDS(.pdf)
PERIPHERAL VASCULAR MAGNETIC RESONANCE ANGIOGRAPHY(.pdf)
CONTRAST ENHANCED MRI OF THE LIVER STATE-OF-THE-ART(.pdf)
MRI Resources 
Online Books - Service and Support - Functional MRI - Examinations - NMR - Fluorescence
 
previous      71 - 75 (of 166)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13]  [14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 23 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]