Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Spin' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Spin' found in 49 terms [] and 268 definitions []
previous     61 - 65 (of 317)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10]  [11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Spin' was also found in the following services: 
spacer
News  (64)  Resources  (27)  Forum  (47)  
 
Radio Frequency Pulse
 
A pulse is a rapid change in the amplitude of a RF signal or in some characteristic a RF signal, e.g., phase or frequency, from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. For radio frequencies near the Larmor frequency, it will result in rotation of the macroscopic magnetization vector. The amount of rotation will depend on the strength and duration of the RF pulse; commonly used examples are 90° (p/2) and 180° (p) pulses.
RF pulses are used in the spin preparation phase of a pulse sequence, which prepare the spin system for the ensuing measurements. In many sequences, RF pulses are also applied to the volumes outside the one to be measured. This is the case when spatial presaturation techniques are used to suppress artifacts. Many preparation pulses are required in MR spectroscopy to suppress signal from unwanted spins. The simplest preparation pulse making use of spectroscopic properties is a fat saturation pulse, which specifically irradiates the patient at the fat resonant frequency, so that the magnetization coming from fat protons is tilted into the xy-plane where it is subsequently destroyed by a strong dephasing gradient.
The frequency spectrum of RF pulses is critical as it determines the spatial extension and homogeneity over which the spin magnetization is influenced while a gradient field is applied.
spacer
 
• Related Searches:
    • Echo
    • Spectroscopy
    • Turbo Spin Echo Turbo Factor
    • Spin Echo
    • Echo Train
 
Further Reading:
  News & More:
MRI Safety: Monitoring Body Temperature During MRI
Thursday, 4 August 2011   by www.diagnosticimaging.com    
Searchterm 'Spin' was also found in the following services: 
spacer
Radiology  (12) Open this link in a new windowUltrasound  (2) Open this link in a new window
T2 Star
 
(T2* or T two star) The observed time constant of the FID due to loss of phase coherence among spins oriented at an angle to the static magnetic field. Commonly due to a combination of magnetic field inhomogeneities, dB, and spin spin transverse relaxation, with the result of rapid loss in transverse magnetization and MRI signal. MRI signals can usually still be recovered as a spin echo in times less than or on the order of T2.
1/T2 * @ 1/T2 + Dw/2; Dw = gDB. The FID will generally not be exponential, so that T2* will not be unique.
spacer

• View the DATABASE results for 'T2 Star' (5).Open this link in a new window


• View the NEWS results for 'T2 Star' (5).Open this link in a new window.
 
Further Reading:
  News & More:
Scientists create imaging 'toolkit' to help identify new brain tumor drug targets
Tuesday, 2 February 2016   by www.eurekalert.org    
MRI Resources 
Safety Training - Veterinary MRI - Stimulator pool - Knee MRI - Liver Imaging - MRI Physics
 
T2 TimeForum -
related threads
 
The T2 relaxation time (spin spin relaxation time or transverse relaxation time), is a biological parameter that is used in MRIs to distinguish between tissue types and is termed 'Time 2' or T2. It is a tissue-specific time constant for protons and is dependent on the exchanging of energy with near by nuclei. T2 weighted images rely upon local dephasing of spins following the application of the transverse energy pulse. T2 is the decay of magnetization perpendicular to the main magnetic field (in an ideal homogeneous field).
Due to interaction between the spins, they lose their phase coherence, which results in a loss of transverse magnetization and MRI signal. After time T2 transverse magnetization has lost 63% of its original value. This tissue parameter determines the contrast.
The T2 relaxation is temperature dependent. At a lower temperature molecular motion is reduced and the decay times are reduced.
Fat has a very efficient energy exchange and therefore it has a relatively short T2.
Water is less efficient than fat in the exchange of energy, and therefore it has a long T2 time.

See also T2 Weighted Image and Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 Breast MRI Images T2 And T1  Open this link in a new window
      
 MRI of the Skull Base  Open this link in a new window
    
SlidersSliders Overview

 Knee MRI Transverse 002  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'T2 Time' (16).Open this link in a new window

 
Further Reading:
  News & More:
MYELIN-SELECTIVE MRI: PULSE SEQUENCE DESIGN AND OPTIMIZATION
   by www.imaging.robarts.ca    
Searchterm 'Spin' was also found in the following services: 
spacer
News  (64)  Resources  (27)  Forum  (47)  
 
Time of Flight AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(TOF) The time of flight angiography is used for the imaging of vessels. Usually the sequence type is a gradient echo sequences with short TR, acquired with slices perpendicular to the direction of blood flow.
The source of diverse flow effects is the difference between the unsaturated and presaturated spins and creates a bright vascular image without the invasive use of contrast media. Flowing blood moves unsaturated spins from outside the slice into the imaging plane. These completely relaxed spins have full equilibrium magnetization and produce (when entering the imaging plane) a much higher signal than stationary spins if a gradient echo sequence is generated. This flow related enhancement is also referred to as entry slice phenomenon, or inflow enhancement.
Performing a presaturation slab on one side parallel to the slice can selectively destroy the MR signal from the in-flowing blood from this side of the slice. This allows the technique to be flow direction sensitive and to separate arteriograms or venograms. When the local magnetization of moving blood is selectively altered in a region, e.g. by selective excitation, it carries the altered magnetization with it when it moves, thus tagging the selected region for times on the order of the relaxation times.
For maximum flow signal, a complete new part of blood has to enter the slice every repetition (TR) period, which makes time of flight angiography sensitive to flow-velocity. The choice of TR and slice thickness should be appropriate to the expected flow-velocities because even small changes in slice thickness influences the performance of the TOF sequence. The use of sequential 2 dimensional Fourier transformation (2DFT) slices, 3DFT slabs, or multiple 3D slabs (chunks) are depending on the coverage required and the range of flow-velocities.
3D TOF MRA is routinely used for evaluating the Circle of Willis.

See also Magnetic Resonance Angiography and Contrast Enhanced Magnetic Resonance Angiography.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Coronary Angiogram
spacer
Medical-Ultrasound-Imaging.comColor Power Angio,  Doppler Ultrasound
spacer

• View the DATABASE results for 'Time of Flight Angiography' (11).Open this link in a new window

 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
  News & More:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
Searchterm 'Spin' was also found in the following services: 
spacer
Radiology  (12) Open this link in a new windowUltrasound  (2) Open this link in a new window
2 Dimensional Nuclear Magnetic ResonanceMRI Resource Directory:
 - NMR -
 
Form of NMR spectroscopy in which an additional dimension is added to the conventional chemical shift dimension by allowing varying amounts of different interactions between spin systems (such as Nuclear Overhauser Effect, spin spin coupling or exchange).
 
Images, Movies, Sliders:
 Breast MRI 3 Transverse T1 Post Contrast 002  Open this link in a new window
 
spacer
 
Further Reading:
  News & More:
Spin Spin Coupling:The splitting of NMR Signals
   by iis.dmhcsm.edu.hk    
MRI Resources 
Pediatric and Fetal MRI - Online Books - Safety Products - Corporations - General - Stent
 
previous      61 - 65 (of 317)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10]  [11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 25 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]