Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Spin Echo Sequence' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Spin Echo Sequence' found in 2 terms [] and 27 definitions []
previous     16 - 20 (of 29)     next
Result Pages : [1]  [2 3 4 5 6]
Searchterm 'Spin Echo Sequence' was also found in the following service: 
spacer
Forum  (1)  
 
Low Angle Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
spacer
MRI Resources 
Calculation - Developers - Abdominal Imaging - MRA - Musculoskeletal and Joint MRI - Functional MRI
 
Modified Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(MSE) A spin echo technique with a flip angle over 90°.

See Spin Echo Sequence and Fast Spin Echo.
spacer
MRI Resources 
Examinations - MRI Reimbursement - Equipment - MRI Training Courses - Safety pool - Fluorescence
 
Motion Compensation Pulse SequencesInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Pulse sequences, designed to be insensitive to flow, e.g. at every even echo, a spin echo sequence is not flow sensitive. Velocity compensation is achieved by using gradients, which are either symmetrical around a 180° pulse and switched on twice as is the case for motion compensated spin echo pulse sequences, or two antisymmetrical gradient lobes without 180° pulse, which is the way to produce a velocity compensated gradient echo pulse sequence.
The signal of the second echo (and all other even echoes) is independent of the velocity of the object. Thus, velocity-based motion effects stemming from the entire voxel or from spins within a voxel (intravoxel incoherent motion) are suppressed with such pulse sequences.
If higher order motion is relevant, as it may be in turbulent jets across valves, acceleration and jerk effects can also be compensated for by the use of appropriate combinations of gradient- and radio frequency pulses.
With the increasingly stronger gradients, echo times in MR systems can be shortened to the point at which effects other than velocity effects hardly ever become relevant.
spacer

• View the DATABASE results for 'Motion Compensation Pulse Sequences' (2).Open this link in a new window

 
Further Reading:
  News & More:
Patient movement during MRI: Additional points to ponder
Tuesday, 5 January 2016   by www.healthimaging.com    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Searchterm 'Spin Echo Sequence' was also found in the following service: 
spacer
Forum  (1)  
 
Multi Echo Imaging
 
Multi echo imaging sequences use a series of echoes acquired as a train following after a single excitation pulse. Multiple symmetrical or asymmetrical echoes can be acquired, typically T2 weighted. In spin echo imaging, each echo is formed by a 180° pulse, but also a FSE (TSE, RARE) or EPI sequence can be used. As a difference to a normal fast spin echo sequence, in multi echo imaging, separate images are produced from each echo of the train with different T2 weightings. The signal height reduces with transverse relaxation. This drop in signal can be used to calculate a pure T2 image.

See also Fast Spin Echo.
spacer

• View the DATABASE results for 'Multi Echo Imaging' (3).Open this link in a new window

 
Further Reading:
  Basics:
A very simple, robust and fast method for estimating and displaying average time constants of T2 decays from multiecho MRI images using color intensity projections
   by arxiv.org    
What MRI Sequences Produce the Highest Specific Absorption Rate (SAR), and Is There Something We Should Be Doing to Reduce the SAR During Standard Examinations?
Thursday, 16 April 2015   by www.ajronline.org    
  News & More:
Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain
Wednesday, 5 June 2013   by www.hindawi.com    
RARE
Monday, 3 December 2012   by www2.warwick.ac.uk    
MRI Resources 
Service and Support - Databases - Corporations - Patient Information - Nerve Stimulator - Safety pool
 
Periodically Rotated Overlapping Parallel Lines with Enhanced ReconstructionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PROPELLER) The PROPELLER MRI technique reduces the sensitivity to various sources of image artifacts (e.g., motion artifact, field inhomogeneity artifact, eddy current artifact). PROPELLER can be used with gradient echo and turbo spin echo sequences in a wide range of applications to improve the image quality, for example cardiac MRI, brain MRI, and pediatric examinations.
spacer
 
Further Reading:
  Basics:
Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction(PROPELLER) MRI; Application to Motion Correction
1999   by cds.ismrm.org    
MR Field Notes
   by www.gehealthcare.com    
Advances in Magnetic Resonance Neuroimaging
Friday, 27 February 2009   by www.ncbi.nlm.nih.gov    
  News & More:
Patient movement during MRI: Additional points to ponder
Tuesday, 5 January 2016   by www.healthimaging.com    
New MR sequence helps radiologists more accurately evaluate abnormalities of the uterus and ovaries
Thursday, 23 April 2009   by www.eurekalert.org    
MRI Resources 
Movies - Safety Training - Portals - Bioinformatics - Databases - Cardiovascular Imaging
 
previous      16 - 20 (of 29)     next
Result Pages : [1]  [2 3 4 5 6]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]