Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Oscillating Gradient System' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Oscillating Gradient System' found in 1 term [] and 1 definition []
1 - 2 (of 2)     
Result Pages : [1]
MRI Resources 
Nerve Stimulator - Liver Imaging - Implant and Prosthesis pool - Process Analysis - Jobs - PACS
 
Oscillating Gradient System
 
A gradient system, which changes the readout gradient sinusoidally by connecting a capacitor to the self inductance generated by the gradient coil. Oscillating gradient systems were initially used in the development of EPI.
This electrical oscillating circuit can be driven with minimal power to generate the gradient amplitudes and switching frequencies required for echo planar imaging (EPI).
Disadvantages are that it is not possible to use any arbitrary trapezoidal gradient wave form as can be used in standard MRI. Also, the gradients are inflexible and cannot be used to create other ultrafast sequences and beside, nonlinear sampling of the MR signal is required.
spacer
 
• Share the entry 'Oscillating Gradient System':  Facebook  Twitter  LinkedIn  
MRI Resources 
MRI Centers - Fluorescence - Intraoperative MRI - Artifacts - Guidance - Manufacturers
 
Blipped Phase Encoding
 
A strategy for incrementing the position of the k-space trajectory of an echo planar imaging (EPI) pulse sequence.
Echo planar imaging (EPI) uses a constant gradient amplitude in one direction. This, combined with an oscillating gradient system in the frequency encoding direction, produces a zigzag trajectory in k-space. In the blipped phase encoding variant of EPI, the k-space position in the phase encoded direction is incremented by gradient 'blips' of the appropriate area. These, when timed to occur during the reversals of the read-out gradient, produce a rectilinear path in k-space.
The artifacts in an EPI image can arise from both hardware and sample imperfections. These are most easily understandable from examination of the k-space trajectory involved, which is either a zigzag form (when using a constant phase encoding gradient) or a rastered zigzag (when the phase encoding is performed with small gradients at the end of each scan line, so-called 'blipped' EPI).
spacer
 
Further Reading:
  Basics:
Chapter 2 - Principles of Magnetic Resonance Imaging
   by www.fmrib.ox.ac.uk    
MRI Resources 
MRA - Research Labs - Anatomy - Cardiovascular Imaging - Veterinary MRI - Corporations
 
     1 - 2 (of 2)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 28 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]