Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Fourier Transformation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Fourier Transformation' found in 8 terms [] and 31 definitions []
previous     11 - 15 (of 39)     next
Result Pages : [1 2]  [3 4 5 6 7 8]
Searchterm 'Fourier Transformation' was also found in the following services: 
spacer
Forum  (1)  
 
K-SpaceForum -
related threads
 
The k-space is an extension of the concept of Fourier space that is well known in imaging. In MR imaging the k-space is a temporary memory of the spatial frequency information in two or three dimensions of an object; the k-space is defined by the space covered by the phase and frequency encoding data.
The relation between K-space data and image data is the Fourier Transformation. The data acquisition matrix contains raw image data before the image processing. In 2 dimensional Fourier transformation imaging, a line of data corresponds to the digitized MRI signal at a particular phase encoding level. The position in k-space is directly related to the gradient across the object being imaged. By changing the gradient over time, the k-space data are sampled in a trajectory through Fourier space at each point until it is filled.

See also Spatial Frequency and Raw Data.
spacer
 
• Related Searches:
    • Sensitivity Encoding
    • Cartesian Sampling
    • Partial Fourier Technique
    • Asymmetric Sampling
    • Parallel Imaging Technique
 
Further Reading:
  Basics:
K-space formulation of MRI
Tuesday, 22 March 2005   by www.ebyte.it    
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
Optimal k-Space Sampling for Dynamic Contrast-Enhanced MRI with an Application to MR Renography
Thursday, 5 November 2009   by www.ncbi.nlm.nih.gov    
Searchterm 'Fourier Transformation' was also found in the following services: 
spacer
Radiology  (3) Open this link in a new windowUltrasound  (5) Open this link in a new window
Array Processor
 
Optional component of the computer system used to perform Fourier transformations to accelerate the processing of the received numerical data relative to the MR imaging process, to speed them up.
spacer

• View the DATABASE results for 'Array Processor' (5).Open this link in a new window

MRI Resources 
Service and Support - MR Myelography - Societies - Spine MRI - Image Quality - Directories
 
Chemical Shift
 
Chemical shift depends on the nucleus and its environment and is defined as nuclear shielding / applied magnetic field. Nuclei are shielded by a small magnetic field caused by circulating electrons, termed nuclear shielding. The strength of the shield depends on the different molecular environment in that the nucleus is embedded. Nuclear shielding is the difference between the magnetic field at the nucleus and the applied magnetic field.
Chemical shift is measured in parts per million (ppm) of the resonance frequency relative to another or a standard resonance frequency.
The major part of the MR signal comes from hydrogen protons; lipid protons contribute a minor part. The chemical shift between water and fat nuclei is about 3.5 ppm (~220 Hz; 1.5T). Through this difference in resonance frequency between water and fat protons at the same location, a misregistration (dislocation) by the Fourier Transformation take place, when converting MR signals from frequency to spatial domain. This effect is called chemical shift artifact or chemical shift misregistration artifact.
spacer

• View the DATABASE results for 'Chemical Shift' (29).Open this link in a new window

 
Further Reading:
  Basics:
FUNDAMENTALS OF MRI: Part III – Forming an MR Image
   by www.e-radiography.net    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
Searchterm 'Fourier Transformation' was also found in the following services: 
spacer
Forum  (1)  
 
Chemical Shift ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Chemical shift, black boundary, spatial misregistration, relief
DESCRIPTION
Black or bright band
During frequency encoding, fat protons precess slower than water protons in the same slice because of their magnetic shielding. Through the difference in resonance frequency between water and fat, protons at the same location are misregistrated (dislocated) by the Fourier transformation, when converting MRI signals from frequency to spatial domain. This chemical shift misregistration cause accentuation of any fat-water interfaces along the frequency axis and may be mistaken for pathology. Where fat and water are in the same location, this artifact can be seen as a bright or dark band at the edge of the anatomy.
Protons in fat and water molecules are separated by a chemical shift of about 3.5 ppm. The actual shift in Hertz (Hz) depends on the magnetic field strength of the magnet being used. Higher field strength increases the misregistration, while in contrast a higher gradient strength has a positive effect. For a 0.3 T system operating at 12.8 MHz the shift will be 44.8 Hz compared with a 223.6 Hz shift for a 1.5 T system operating at 63.9 MHz.
mri safety guidance
Image Guidance
For artifact reduction helps a smaller water fat shift (higher bandwidth), a higher matrix, an in phase TE or a spin echo technique. Since the misregistration offset is present in the read out axis the patient may be rescanned with this axis parallel to the fat-water interface. Steeper gradient may be employed to reduce the chemical shift offset in mm. Another strategy is to employ specialized pulse sequences such as fat saturation or inversion recovery imaging. Fat suppression techniques eliminate chemical shift artifacts caused by the lack of fat signal.

See also Black Boundary Artifact and Magnetic Resonance Spectroscopy.
spacer

• View the DATABASE results for 'Chemical Shift Artifact' (7).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
  News & More:
What is chemical shift artefact? Why does it occur? How many Hz at 1.5 T?
   by www.revisemri.com    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
Searchterm 'Fourier Transformation' was also found in the following services: 
spacer
Radiology  (3) Open this link in a new windowUltrasound  (5) Open this link in a new window
Convolution
 
Convolution is a mathematical way of combining two signals to form a third signal. It is the single most important technique in digital signal processing. This operation is mostly used together with Fourier transformations for MRI signal / image processing.
spacer

• View the DATABASE results for 'Convolution' (2).Open this link in a new window

 
Further Reading:
  Basics:
Convolution
   by www.wam.umd.edu    
Fourier Transforms and 2-D Image Processing
   by robotics.eecs.berkeley.edu    
The Scientist and Engineer's Guide to Digital Signal Processing
  News & More:
New Compressed Sensing Technique to Accelerate MRI Acquisition Process
Tuesday, 9 October 2012   by www.azosensors.com    
MRI Resources 
MRI Reimbursement - Claustrophobia - Societies - Musculoskeletal and Joint MRI - Shielding - Stent
 
previous      11 - 15 (of 39)     next
Result Pages : [1 2]  [3 4 5 6 7 8]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 19 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]