Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Foldover Suppression' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Foldover Suppression' found in 1 term [] and 3 definitions []
1 - 4 (of 4)     
Result Pages : [1]
MRI Resources 
Coils - MRI Centers - Case Studies - Quality Advice - Cardiovascular Imaging - Nerve Stimulator
 
Foldover SuppressionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
A problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV. This signal will be mapped (wrapped, backfolded) back into the image at incorrect locations.
Foldover suppression (phase oversampling, no phase wrap) is a user-selectable parameter that maps this signal to its correct location outside the FOV, then discards any signal from outside the FOV before displaying the image. In order to be able to choose this parameter, in most cases more than an average is necessary.

See also Phase Wrapping Artifact and Oversampling.
spacer
 
• Share the entry 'Foldover Suppression':  Facebook  Twitter  LinkedIn  
MRI Resources 
Research Labs - Image Quality - Education - Process Analysis - Software - Non-English
 
Aliasing ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this MRI artifact.
Artifact Information
NAME
Aliasing, backfolding, foldover, phase wrapping, wrap around
DESCRIPTION
Image wrap around
Aliasing is an artifact that occurs in MR images when the scanned body part is larger than field of view (FOV). As a consequence of the acquired k-space frequencies not being sampled densely enough, whereby portions of the object outside of the desired FOV get mapped to an incorrect location inside the FOV. The cyclical property of the Fourier transform fills the missing data of the right side with data from behind the FOV of the left side and vice versa. This is caused by a too small number of samples acquired in, e.g. the frequency encoding direction, therefore the spectrums will overlap, resulting in a replication of the object in the x direction.
Aliasing in the frequency direction can be eliminated by twice as fast sampling of the signal or by applying frequency specific filters to the received signal.
A similar problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV. Phase encoding gradients are scaled for the field of view only, therefore tissues outside the FOV do not get properly phase encoded relative to their actual position and 'wraps' into the opposite side of the image.
mri safety guidance
Image Guidance
Use a larger FOV, RFOV or 3D Volume, apply presaturation pulses to the undesired tissue, adjust the position of the FOV, or select a small coil which will only receive signal from objects inside or near the coil. The number of phase encoding steps must be increased in phase direction, unfortunately resulting in longer scan times.
When this is not possible it can be corrected by oversampling the data. Aliasing is eliminated by Oversampling in frequency direction. No Phase Wrap (Foldover Suppression) options typically correct the phase encoding by doubling the field of view, doubling the number of phase encodes (to keep resolution constant) and halving the number of averages (to keep scan time constant) then discarding the additional data and processing the image within the desired field of view (but this is more time consuming).
Tissue outside this doubled area can be folded nevertheless into the image as phase wrap. In this case combine more than 2 number of excitations / number of signal averages with foldover suppression.
See also Aliasing, Foldover Suppression, Oversampling, and Artifact Reduction - Aliasing.
spacer

• View the DATABASE results for 'Aliasing Artifact' (11).Open this link in a new window

MRI Resources 
Education pool - Jobs pool - Mobile MRI - Journals - MRI Technician and Technologist Jobs - Corporations
 
Backfolding ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Backfolding, foldover, phase wrapping, wrap around
DESCRIPTION
Image wrap around
Backfolding always occurs due to wrong phase encoding caused by objects outside the planned FOV. Phase encoding gradients are scaled for the field of view only. Tissues outside the FOV do not get properly phase encoded relative to their actual position and 'wraps' into the opposite side of the image. The Backfolding artifact projects image contents which fall outside the imaging FOV back into the image; the back folded information thus reappearing on the other side of the image. In fact, information along the phase encoding direction can be viewed as projected onto a cylindrical screen with a circumference corresponding to the linear field of view dimension in the phase encoding direction.

See also Aliasing Artifact.
spacer

• View the DATABASE results for 'Backfolding Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
Aliasing or wrap around artifacts
Thursday, 31 March 2011   by de.slideshare.net    
MRI Resources 
Safety Training - Libraries - Shielding - RIS - Mobile MRI Rental - Directories
 
No Phase Wrap
 
(NPW / PNW - Phase No Wrap) If the receiving RF coil is sensitive to tissue signal arising from outside the desired FOV, this undesired signal may be incorrectly mapped, or wrapped back to a location within the image and is seen as artifact. This problem occurs in the phase encoding direction, where the phases of signal-bearing tissues outside of the FOV in the y-direction are a replication of the phases that are encoded within the FOV.
A user-selectable parameter maps this signal to its correct location outside the FOV, then discards any signal from outside the FOV before displaying the image. No phase wrap works by filling k-space to the same extent, using twice as many phase encoding steps. In order to be able to choose this parameter, in most cases more than an average is necessary.

See Foldover Suppression and Oversampling.
spacer

• View the DATABASE results for 'No Phase Wrap' (5).Open this link in a new window

MRI Resources 
Case Studies - Implant and Prosthesis - NMR - - Blood Flow Imaging - MRI Centers
 
     1 - 4 (of 4)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]