Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets


Out-
      side
 



 
 'Fluoroscopy' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Fluoroscopy' found in 0 term [] and 1 definition []
1 (of 1)     
Result Pages : [1]
Searchterm 'Fluoroscopy' was also found in the following services: 
spacer
News  (1)  Resources  (4)  
 
Medical Imaging
 
The definition of imaging is the visual representation of an object. Medical imaging began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. The next development involved the use of fluorescent screens and special glasses to see x-ray images in real time.
A major development was the application of contrast agents for a better image contrast and organ visualization. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This medical imaging technology allows information of biologic processes in vivo. Today, PET and SPECT play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In 1955, the first x-ray image intensifier allowed the pick up and display of x-ray movies.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasonic waves generated by a quartz crystal are reflected at the interfaces between different tissues, received by the ultrasound machine, and turned into pictures with the use of computers and reconstruction software. Ultrasound imaging is an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast agents, real-time 3D ultrasound imaging, and molecular imaging.
Digital imaging techniques were implemented in the 1970s into conventional fluoroscopic image intensifier and by Godfrey Hounsfield with the first computed tomography. Digital images are electronic snapshots sampled and mapped as a grid of dots or pixels. The introduction of x-ray CT revolutionised medical imaging with cross sectional images of the human body and high contrast between different types of soft tissue. These developments were made possible by analog to digital converters and computers. The multislice spiral CT technology has expands the clinical applications dramatically.
The first MRI devices were tested on clinical patients in 1980. The spread of CT machines is the spur to the rapid development of MRI imaging and the introduction of tomographic imaging techniques into diagnostic nuclear medicine. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.
Today, imaging in medicine has advanced to a stage that was inconceivable 100 years ago, with growing medical imaging modalities:
X-ray projection imaging
Fluoroscopy
Computed tomography (CT / CAT)
Ultrasound imaging (US)
Magnetic resonance imaging (MRI)
Magnetic resonance spectroscopy (MRS)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Magnetic source imaging (MSI)
All this type of scans are an integral part of modern healthcare. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in picture archiving and communication systems (PACS). In telemedicine, healthcare professionals are linked over a computer network. Using cutting-edge computing and communications technologies, in videoconferences, where audio and visual images are transmitted in real time, medical images of MRI scans, x-ray examinations, CT scans and other pictures are shareable.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of', 'MRI will have replaced 50% of x-ray exams by'
Radiology-tip.comDiagnostic Imaging
spacer
Radiology-tip.comMedical Imaging
spacer
 
• Share the entry 'Medical Imaging':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Cervical Spine MRI
    • Device
    • Shoulder MRI
    • Computer Aided Detection
    • MRI History
 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Medical imaging shows cost control problem
Tuesday, 6 November 2012   by www.mysanantonio.com    
  News & More:
3D-DOCTOR Tutorial
   by www.ablesw.com    
MRI Resources 
Manufacturers - Homepages - Stimulator pool - Liver Imaging - DICOM - Equipment
 
     1 (of 1)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?  



PET-MRI is :
a valuable new tool 
worth to develop more 
unnecessary 
too expensive 
only for research 
the replacement for PET-CT 
for vets only 

Look
      Ups





Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • US-TIP • The-Medical-Market
Copyright © 2003 - 2014 SoftWays. All rights reserved. [ 29 July 2014]
Terms of Use | Privacy Policy | Advertising
 [last update: 2014-07-28 02:50:35]