Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Flow' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Flow' found in 15 terms [] and 98 definitions []
previous     86 - 90 (of 113)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Flow' was also found in the following services: 
spacer
News  (51)  Resources  (20)  Forum  (14)  
 
Magnetic Resonance Imaging MRI
 
(MRI) Magnetic resonance imaging is a noninvasive medical imaging technique that uses the interaction between radio frequency pulses, a strong magnetic field and body tissue to obtain images of slices/planes from inside the body. These magnets generate fields from approx. 2000 times up to 30000 times stronger than that of the Earth. The use of nuclear magnetic resonance principles produces extremely detailed pictures of the body tissue without the need for x-ray exposure and gives diagnostic information of various organs.
Measured are mobile hydrogen nuclei (protons are the hydrogen atoms of water, the 'H' in H20), the majority of elements in the body. Only a small part of them contribute to the measured signal, caused by their different alignment in the magnetic field. Protons are capable of absorbing energy if exposed to short radio wave pulses (electromagnetic energy) at their resonance frequency. After the absorption of this energy, the nuclei release this energy so that they return to their initial state of equilibrium.
This transmission of energy by the nuclei as they return to their initial state is what is observed as the MRI signal. The subtle differing characteristic of that signal from different tissues combined with complex mathematical formulas analyzed on modern computers is what enables MRI imaging to distinguish between various organs. Any imaging plane, or slice, can be projected, and then stored or printed.
The measured signal intensity depends jointly on the spin density and the relaxation times (T1 time and T2 time), with their relative importance depending on the particular imaging technique and choice of interpulse times. Any motion such as blood flow, respiration, etc. also affects the image brightness.
Magnetic resonance imaging is particularly sensitive in assessing anatomical structures, organs and soft tissues for the detection and diagnosis of a broad range of pathological conditions. MRI pictures can provide contrast between benign and pathological tissues and may be used to stage cancers as well as to evaluate the response to treatment of malignancies. The need for biopsy or exploratory surgery can be eliminated in some cases, and can result in earlier diagnosis of many diseases.

See also MRI History and Functional Magnetic Resonance Imaging (fMRI).
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Lumbar Spine  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Breast MRI Images T2 And T1 Pre - Post Contrast  Open this link in a new window
 Anatomic Imaging of the Shoulder  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer
 
• Related Searches:
    • Breast MRI
    • MRI Scan
    • MRI Procedure
    • Spine MRI
    • Larmor Equation
 
Further Reading:
  Basics:
Bringing More Value to Imaging Departments With MRI
Friday, 4 October 2019   by www.itnonline.com    
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
On the Horizon - Next Generation MRI
Wednesday, 23 October 2013   by thefutureofthings.com    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
  News & More:
High-resolution MRI enables direct imaging of neuronal activity - DIANA – direct imaging of neuronal activity
Friday, 18 November 2022   by physicsworld.com    
New MRI technique can 'see' molecular changes in the brain
Thursday, 5 September 2019   by medicalxpress.com    
How new MRI technology is transforming the patient experience
Tuesday, 14 May 2019   by newsroom.gehealthcare.com    
Metamaterials boost sensitivity of MRI machines
Thursday, 14 January 2016   by www.eurekalert.org    
MRI technique allows study of wrist in motion
Monday, 6 January 2014   by www.healthimaging.com    
New imaging technology promising for several types of cancer
Thursday, 29 August 2013   by medicalxpress.com    
MRI method for measuring MS progression validated
Thursday, 19 December 2013   by www.eurekalert.org    
Searchterm 'Flow' was also found in the following services: 
spacer
Radiology  (25) Open this link in a new windowUltrasound  (120) Open this link in a new window
Maximum Intensity Projection
 
(MIP) MRA images can be processed by Maximum Intensity Projection to interactively create different projections. The MIP connects the high intensity dots of the blood vessels in three dimensions, providing an angiogram that can be viewed from any projection. Each point in the MIP represents the highest intensity experienced in that location on any partition within the imaging volume.
For complete interpretation the base slices should also be reviewed individually and with multiplanar reconstruction (MPR) software. The MIP can then be displayed in a CINE format or filmed as multiple images acquired from different projections. Although the maximum intensity projection (MIP) algorithm is sensitive to high signal from inflowing spins, it is also sensitive to high signal of any other etiology.
 
Images, Movies, Sliders:
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Maximum Intensity Projection' (5).Open this link in a new window

 
Further Reading:
  News & More:
State of the art in magnetic resonance imaging
Saturday, 1 February 2020   by physicstoday.scitation.org    
4D-Fueled AI with DCE-MRI Improves Breast Lesion Characterization
Friday, 26 February 2021   by www.diagnosticimaging.com    
MRI Resources 
Musculoskeletal and Joint MRI - Mass Spectrometry - Stent - DICOM - Cardiovascular Imaging - Veterinary MRI
 
Maxwell CoilInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
A particular kind of gradient coil, commonly used to create magnetic field gradients along the direction of the main magnetic field. The maxwell coil consists of a pair of coils separated by 1.73 times their radius. Current flows in the opposite sense in the two coils, and produces a very linear gradient.
spacer

• View the DATABASE results for 'Maxwell Coil' (3).Open this link in a new window

Searchterm 'Flow' was also found in the following services: 
spacer
News  (51)  Resources  (20)  Forum  (14)  
 
Multi ChunkInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(MC) Multiple 3D Volumes (chunks) joined together in 1 scan. Used for 3D TOF angiography. 3D TOF MRA is acquired with 3D FT slabs or multiple overlapping thin 3D FT slabs depending on the coverage required and the range of flow-velocities under examination.
Also called multiple overlapping thin slab slice acquisition (MOTSA) or multi slab.
 
Images, Movies, Sliders:
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Multi Chunk' (14).Open this link in a new window

Searchterm 'Flow' was also found in the following services: 
spacer
Radiology  (25) Open this link in a new windowUltrasound  (120) Open this link in a new window
Multi Echo Data Image CombinationInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(MEDIC) MEDIC is a heavily T2* weighted spoiled gradient echo sequence with multiple echoes. MEDIC uses a series of identically phase encoded gradient echoes, sampled per line in k-space. Unipolar frequency encoding gradients are used to achieve flow compensation and to avoid off resonance effects. For each echo the magnitude images are reconstructed and postprocessed by using a sum of squares algorithm to improve the signal to noise ratio. The increased receiver bandwidth reduces the T2* effects and impairment of the spatial resolution.
The multi echo data image combination sequence is potentially useful in imaging of cartilage in joints.
spacer

• View the DATABASE results for 'Multi Echo Data Image Combination' (2).Open this link in a new window

MRI Resources 
Functional MRI - Process Analysis - Cardiovascular Imaging - Safety Training - Diffusion Weighted Imaging - Calculation
 
previous      86 - 90 (of 113)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 March 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]