Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Field Even Echo Rephasing' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Field Even Echo Rephasing' found in 1 term [] and 0 definition [], (+ 1 Boolean[] results
1 - 2 (of 2)     
Result Pages : [1]
MRI Resources 
Breast MRI - Most Wanted - Brain MRI - Research Labs - Knee MRI - Cochlear Implant
 
Field Even Echo Rephasing
 
The FEER method was the first clinically useful flow quantification method using phase effects, from which all spin phase related flow quantification techniques currently in use are derived.
In this sequence a gradient echo is measured after a gradient with flow compensation. The measured signal phase should be zero for all pixels. A deviation from gradient symmetry by shifting the gradient ramp slightly away from the symmetry condition will impart a defined phase shift to the magnetization vectors associated with spins from pixels with flow.
Slight stable variations in the magnetic field across the imaging volume will prevent the phase angle from being uniformly zero throughout the volume in the flow-compensated image. The first image (acquired without gradient shift) serves as reference, defining the values of all pixel phase angles in the flow (motion) compensated sequence. Ensuing images with gradient phase shifts imparted in each of the 3 spatial axes will then permit measurement of the 3 components of the velocity vector v = (vx, vy, vz) by calculating the respective phases px, py and pz by simply subtracting the pixel phases measured in the compensated image from the 3 images with a well defined velocity sensitization.
The determination of all 3 components of the velocity vector requires the measurement of 4 images.
The phase quantification requires an imaging time four times longer than the simple measurement of a phase image and associated magnitude image. If only one arbitrary flow direction is of interest, it suffices to acquire the reference image plus one image velocity sensitized in the arbitrary direction of interest.

See also Flow Quantification.
spacer
 
• Share the entry 'Field Even Echo Rephasing':  Facebook  Twitter  LinkedIn  
MRI Resources 
Spectroscopy - NMR - Quality Advice - Directories - Intraoperative MRI - Hospitals
 
Flow CompensationInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.
 
Flow compensation is based on the principle of even echo rephasing and a function of specific pulse sequences, wherein the application of strategic gradient pulses can compensate for the objectionable spin phase effects of flow motion. Gradient moment nulling of the first order of flow is another adjustment for the reduction of flow artifacts.
Gradient field changes can be configured in such a way that during an echo the magnetization signal vectors for all pixels have zero phase angle independent of velocities, accelerations etc. of the measured tissue. The simplest velocity-compensated pulse sequence is the symmetrical second echo of a spin echo pulse sequence.
Strategic gradient pulses are integrated in special sequences (e.g. CRISP, Complex Rephasing Integrated with Surface Probes) and for the most sequences flow compensation is an optional parameter.
spacer

• View the DATABASE results for 'Flow Compensation' (14).Open this link in a new window

 
Further Reading:
  Basics:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Flow comp off: An easy technique to confirm CSF flow within syrinx and aqueduct
Wednesday, 2 January 2013   by medind.nic.in    
MRI Resources 
Stent - Corporations - Contrast Agents - MRI Technician and Technologist Jobs - MRI Training Courses - Spectroscopy pool
 
     1 - 2 (of 2)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]